Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Master recyclers: features and functions of bacteria associated with phytoplankton blooms

Key Points

  • Phytoplankton are the most abundant primary producers in the oceans, and phytoplankton blooms are recognizable signs of the annual productivity cycle in aquatic systems.

  • Phytoplankton blooms contain dense and diverse heterotrophic bacterial populations that determine the fate of much of the carbon that is fixed by these primary producers. This is achieved by the transformation of phytoplankton-derived organic matter, which returns carbon to the atmosphere as CO2 and converts carbon to bacterial biomass, which enters the marine food web or renders it resistant to microbial degradation, such that it contributes to a vast pool of recalcitrant carbon in the ocean.

  • Although blooms vary in terms of phytoplankton composition and environmental conditions, a limited number of bacterial taxa dominate bloom-associated microbial communities. The most frequently observed bacteria belong to the Flavobacteriia and Proteobacteria.

  • Cultivated representatives of both flavobacteria and roseobacters are currently the main models that are used to study phytoplankton–bacteria interactions. These two lineages show substantial metabolic versatility, which seems to fuel these interactions.

  • Culture-based studies of roseobacters suggest that they form more intimate associations with specific phytoplankton than flavobacteria. Specific physiological processes that have been identified in cultured representatives and are supported by metagenomic data from natural populations have been proposed to facilitate these interactions. These include the production of secondary metabolites, catabolism of various phytoplankton-derived low molecular weight compounds and cell surface structures that facilitate cellular adhesion.

  • Genomic, metatranscriptomic and metaproteomic data suggest that flavobacteria are particularly well equipped to use the high molecular weight components of phytoplankton-derived material. Other flavobacterial physiologies, including cell adhesion and motility, may be important in facilitating interactions between flavobacteria and phytoplankton.

Abstract

Marine phytoplankton blooms are annual spring events that sustain active and diverse bloom-associated bacterial populations. Blooms vary considerably in terms of eukaryotic species composition and environmental conditions, but a limited number of heterotrophic bacterial lineages — primarily members of the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria — dominate these communities. In this Review, we discuss the central role that these bacteria have in transforming phytoplankton-derived organic matter and thus in biogeochemical nutrient cycling. On the basis of selected field and laboratory-based studies of flavobacteria and roseobacters, distinct metabolic strategies are emerging for these archetypal phytoplankton-associated taxa, which provide insights into the underlying mechanisms that dictate their behaviours during blooms.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Bacterial transformation of phytoplankton-derived organic matter.
Figure 2: A representative bloom in the southern Pacific Ocean.
Figure 3: Changes in the abundance of roseobacter and flavobacteria phylotypes during a diatom-dominated bloom.
Figure 4: Physiological features of roseobacters that facilitate associations with phytoplankton.
Figure 5: Physiological features of flavobacteria that facilitate associations with phytoplankton.

References

  1. Ducklow, H. W., Kirchman, D. L., Quinby, H. L., Carlson, C. A. & Dam, H. G. Stocks and dynamics of bacterioplankton carbon during the spring bloom in the eastern northern Atlantic Ocean. Deep-Sea Res. Part II Top. Studies Oceanogr. 40, 245–263 (1993).

    Google Scholar 

  2. Cole, J. J., Findlay, S. & Pace, M. L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecol. Prog. Ser. 43, 1–10 (1988).

    Google Scholar 

  3. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Google Scholar 

  4. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    CAS  PubMed  Google Scholar 

  5. Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, GB1006 (2005).

    Google Scholar 

  6. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nature 10, 782–791 (2007).

    Google Scholar 

  7. Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecol. Prog. Ser. 10, 257–263 (1983). This is one of the first papers to introduce the concept of the microbial loop.

    Google Scholar 

  8. Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Rev. Microbiol. 8, 593–599 (2010). This review provides the first description of the microbial carbon pump hypothesis and its effect on long-term carbon sequestration in the ocean.

    CAS  Google Scholar 

  9. Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. Bioscience 49, 781–788 (1999).

    Google Scholar 

  10. Bjornsen, P. K. Phytoplankton exudation of organic matter: why do healthy cells do it? Limnol. Oceanogr. 33, 151–154 (1988).

    Google Scholar 

  11. Biddanda, B. & Benner, R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 42, 506–518 (1997).

    CAS  Google Scholar 

  12. Fernandez, E., Serret, P., Demadariaga, I., Harbour, D. S. & Davies, A. G. Photosynthetic carbon metabolism and biochemical composition of spring phytoplankton assemblages enclosed in microcosms: the diatom–Phaeocystis sp. succession. Marine Ecol. Prog. Ser. 90, 89–102 (1992).

    CAS  Google Scholar 

  13. Reitan, K. I., Rainuzzo, J. R. & Olsen, Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae J. Phycol. 30, 972–979 (1994).

    CAS  Google Scholar 

  14. van Rijssel, M., Janse, I., Noordkamp, D. J. B. & Gieskes, W. W. C. An inventory of factors that affect polysaccharide production by Phaeocystis globosa. J. Sea Res. 43, 297–306 (2000).

    CAS  Google Scholar 

  15. Buchan, A., Gonzalez, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirchman, D. L. The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100 (2002).

    CAS  PubMed  Google Scholar 

  17. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012). This is a comprehensive study of bacterial populations in a natural phytoplankton bloom using state-of-the-art methodologies to link bacterial community structure and function.

    CAS  PubMed  Google Scholar 

  18. Smetacek, V. & Cloern, J. E. Oceans. On phytoplankton trends. Science 319, 1346–1348 (2008).

    CAS  PubMed  Google Scholar 

  19. Behrenfeld, M. J. Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms. Ecology 91, 977–989 (2010).

    PubMed  Google Scholar 

  20. Taylor, J. R. & Ferrari, R. Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr. 56, 2293–2307 (2011).

    Google Scholar 

  21. Tyrrell, T. & Merico, A. in Coccolithophores: from molecular processes to global impacts (eds Thierstein, H. R. & Young, J. R.) 75–97 (Springer, 2004).

    Google Scholar 

  22. Lessard, E. J., Merico, A. & Tyrrell, T. Nitrate:phosphate ratios and Emiliania huxleyi blooms. Limnol. Oceanogr. 50, 1020–1024 (2005).

    CAS  Google Scholar 

  23. Schoemann, V., Becquevort, S., Stefels, J., Rousseau, W. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 53, 43–66 (2005).

    CAS  Google Scholar 

  24. Egge, J. K. & Aksnes, D. L. Silicate as regulating nutrient in phytoplankton competition. Marine Ecol. Prog. Ser. 83, 281–289 (1992).

    CAS  Google Scholar 

  25. Martin, A. The seasonal smorgasbord of the seas. Science 337, 46–47 (2012).

    CAS  PubMed  Google Scholar 

  26. Chang, F. H., Zeldis, J., Gall, M. & Hall, J. Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. J. Plankton Res. 25, 737–758 (2003).

    CAS  Google Scholar 

  27. Sanderson, M. P. et al. Phytoplankton and bacterial uptake of inorganic and organic nitrogen during an induced bloom of Phaeocystis pouchetii. Aquat. Microb. Ecol. 51, 153–168 (2008).

    Google Scholar 

  28. Castberg, T. et al. Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Marine Ecol. Prog. Ser. 221, 39–46 (2001).

    Google Scholar 

  29. Loeder, M. G. J., Meunier, C., Wiltshire, K. H., Boersma, M. & Aberle, N. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Marine Biol. 158, 1551–1580 (2011).

    Google Scholar 

  30. Riemann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000). This is one of the initial papers that reports the phenotypic and phylogenetic changes that occur to the bacterial community during the formation and decay of a phytoplankton bloom.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yager, P. L. et al. Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol. Oceanogr. 46, 790–801 (2001).

    CAS  Google Scholar 

  32. Taylor, M. H., Losch, M. & Bracher, A. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: a modeling approach. J. Geophys. Res. Oceans 118, 63–75 (2013).

    Google Scholar 

  33. Bratbak, G., Wilson, W. & Heldal, M. Viral control of Emiliania huxleyi blooms? J. Marine Systems 9, 75–81 (1996).

    Google Scholar 

  34. Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implicates for rapid particle dissolution. Nature 359, 139–142 (1992). This paper reports that particle dissolution occurs rapidly owing to the extremely high levels of bacterial hydrolytic activity, despite the fact that the bacteria that produce the enzymes do not use all of the products of hydrolysis.

    CAS  Google Scholar 

  35. Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Progress Oceanogr. 55, 287–333 (2002).

    Google Scholar 

  36. Moran, M. A., Reisch, C. R., Kiene, R. P. & Whitman, W. B. Genomic insights into bacterial DMSP transformations. Ann. Rev. Mar. Sci. 4, 523–542 (2012). This is a comprehensive review of DMSP transformation pathways in marine bacteria.

    PubMed  Google Scholar 

  37. Charlson, R., Lovelock, J., Andreae, M. & Warren, S. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987). This study describes the CLAW hypothesis, which proposes that phytoplankton-produced DMS has a key role in climate regulation. The CLAW acronym comes from the first letters of the surnames of the authors.

    CAS  Google Scholar 

  38. Orellana, M. V. et al. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl Acad. Sci. USA 108, 13612–13617 (2011). This study reports the role of microgels (which are produced by phytoplankton) in cloud formation and their possible effects on climate.

    CAS  PubMed  Google Scholar 

  39. Bird, D. F. & Karl, D. M. Uncoupling of bacteria and phytoplankton during the austral spring bloom in Gerlache Strait, Antarctic Peninsula. Aquat. Microb. Ecol. 19, 13–27 (1999).

    Google Scholar 

  40. Arrieta, J. M. & Herndl, G. I. Changes in bacterial β-glucosidase diversity during a coastal phytoplankton bloom. Limnol. Oceanogr. 47, 594–599 (2002).

    CAS  Google Scholar 

  41. Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nature Rev. Microbiol. 3, 637–646 (2005).

    Google Scholar 

  42. Bratbak, G., Jacobsen, A. & Heldal, M. Viral lysis of Phaeocystis pouchetii and bacterial secondary production. Aquat. Microb. Ecol. 16, 11–16 (1998).

    Google Scholar 

  43. Hellebust, J. A. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10, 192–206 (1965).

    Google Scholar 

  44. Myklestad, S. M. in The Handbook of Environmental Chemistry Vol. 5D (ed. Wangersky, P.) 111–148 (Springer, 2000).

    Google Scholar 

  45. Miller, T. R., Hnilicka, K., Dziedzic, A., Desplats, P. & Belas, R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl. Environ. Microbiol. 70, 4692–4701 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bratbak, G. & Thingstad, T. F. Phytoplankton–bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Marine Ecol. Prog. Ser. 25, 23–30 (1985).

    Google Scholar 

  47. Danger, M., Leflaive, J., Oumarou, C., Ten-Hage, L. & Lacroix, G. Control of phytoplankton–bacteria interactions by stoichiometric constraints. Oikos 116, 1079–1086 (2007).

    CAS  Google Scholar 

  48. Proctor, L. & Fuhrman, J. A. Roles of viral infection in organic particle flux. Marine Ecol. Prog. Ser. 69, 133–142 (1991).

    Google Scholar 

  49. Kujawinski, E. B. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Marine Sci. 3, 567–599 (2011).

    Google Scholar 

  50. Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Marine Sci. 3, 401–425 (2010).

    Google Scholar 

  51. Stoderegger, K. E. & Herndl, G. J. Dynamics in bacterial surface properties of a natural bacterial community in the coastal North Sea during a spring phytoplankton bloom. FEMS Microbiol. Ecol. 53, 285–294 (2005).

    CAS  PubMed  Google Scholar 

  52. Grossart, H. P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277 (2001).

    CAS  Google Scholar 

  53. Hopkinson, C. S. & Vallino, J. J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433, 142–145 (2005).

    CAS  PubMed  Google Scholar 

  54. Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. & Benner, R. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001).

    CAS  PubMed  Google Scholar 

  55. Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. 70, 6753–6766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zubkov, M. V. et al. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ. Microbiol. 3, 304–311 (2001).

    CAS  PubMed  Google Scholar 

  57. Stepanauskas, R., Moran, M. A., Bergamaschi, B. A. & Hollibaugh, J. T. Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat. Microb. Ecol. 31, 85–98 (2003).

    Google Scholar 

  58. Alonso-Saez, L. & Gasol, J. M. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Appl. Environ. Microbiol. 73, 3528–3535 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinhassi, J. & Berman, T. Differential growth response of colony-forming α- and γ-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl. Environ. Microbiol. 69, 199–211 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873 (2005).

    CAS  PubMed  Google Scholar 

  61. LeCleir, G. R., DeBruyn, J. M., Maas, E. W., Boyd, P. W. & Wilhelm, S. W. Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps. FEMS Microbiol. Ecol. 87, 153–163 (2014).

    CAS  PubMed  Google Scholar 

  62. Fandino, L. B., Riemann, L., Steward, G. F., Long, R. A. & Azam, F. Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat. Microb. Ecol. 23, 119–130 (2001).

    Google Scholar 

  63. Rink, B. et al. Effects of phytoplankton bloom in a coastal ecosystem on the composition of bacterial communities. Aquat. Microb. Ecol. 48, 47–60 (2007).

    Google Scholar 

  64. Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15, 1302–1317 (2013).

    CAS  PubMed  Google Scholar 

  65. Holmfeldt, K., Middelboe, M., Nybroe, O. & Riemann, L. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl. Environ. Microbiol. 73, 6730–6739 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. & Walsh, D. A. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 8, 1301–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).

    CAS  PubMed  Google Scholar 

  68. Giovannoni, S. J. & Rappe, M. in Microbial Ecology of the Oceans (eds Kirchman, D. L.) 47–84 (John Wiley & Sons, 2000). This book chapter provides an early review of the different groups of marine bacteria on the basis of culture-independent surveys.

    Google Scholar 

  69. Goecke, F., Thiel, V., Wiese, J., Labes, A. & Imhoff, J. F. Algae as an important environment for bacteria–phylogenetic relationships among new bacterial species isolated from algae. Phycologia 52, 14–24 (2013).

    CAS  Google Scholar 

  70. Wagner-Doebler, I. et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME J. 4, 61–77 (2010).

    CAS  Google Scholar 

  71. Mayali, X., Franks, P. J. S. & Burton, R. S. Temporal attachment dynamics by distinct bacterial taxa during a dinoflagellate bloom. Aquat. Microb. Ecol. 63, 111–122 (2011).

    Google Scholar 

  72. Seyedsayamdost, M. R., Case, R. J., Kolter, R. & Clardy, J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaciensis. Nature Chem. 3, 331–335 (2011).

    CAS  Google Scholar 

  73. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    CAS  PubMed  Google Scholar 

  74. Luo, H., Csűros, M., Hughes, A. L. & Moran, M. A. Evolution of divergent life history strategies in marine Alphaproteobacteria. mBio 4, e00373–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wagner-Döbler, I. & Bibel, H. Environmental biology of the marine Roseobacter lineage. Annu. Rev. Microbiol. 60, 255–280 (2006).

    PubMed  Google Scholar 

  77. Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 4, 784–798 (2010).

    CAS  PubMed  Google Scholar 

  78. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    CAS  PubMed  Google Scholar 

  79. Rocap, G. et al. Genomic divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).

    CAS  PubMed  Google Scholar 

  80. Ottesen, E. A. et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 5, 1881–1895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Luo, H., Loytynoja, A. & Moran, M. A. Genome content of uncultivated marine roseobacters in the surface ocean. Environ. Microbiol. 14, 41–51 (2011).

    PubMed  Google Scholar 

  82. Shiba, T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. System. Appl. Microbiol. 14, 140–145 (1991). This article formally describes the first species of bacteria in the Roseobacter clade, with an emphasis on their ability to synthesize pigments to make use of light.

    Google Scholar 

  83. Mayali, X., Franks, P. J. S. & Azam, F. Cultivation and ecosystem role of a marine Roseobacter clade-affiliated cluster bacterium. Appl. Environ. Microbiol. 74, 2595–2603 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Alavi, M. R. Predator/prey interaction between Pfiesteria piscicida and Rhodomonas mediated by a marine α-proteobacterium. Microb. Ecol. 47, 48–58 (2004).

    CAS  PubMed  Google Scholar 

  85. Sharifah, E. N. & Eguchi, M. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS ONE 6, e26756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Amaro, A. M., Fuentes, M. S., Ogalde, S. R., Venegas, J. A. & Suarez-Isla, B. A. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J. Eukaryot. Microbiol. 52, 191–200 (2005).

    PubMed  Google Scholar 

  87. Moran, M. A. et al. Ecological genomics of marine roseobacters. Appl. Environ. Microbiol. 73, 4559–4569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. González, J. M., Kiene, R. P. & Moran, M. A. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65, 3810–3819 (1999).

    PubMed  PubMed Central  Google Scholar 

  89. Chen, Y. Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm, gmaS). Environ. Microbiol. 14, 2308–2322 (2012).

    CAS  PubMed  Google Scholar 

  90. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    CAS  PubMed  Google Scholar 

  91. Berger, M., Neumann, R., Schulz, S., Simon, M. & Brinkhoff, T. Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J. Bacteriol. 193, 6576–6585 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Geng, H. & Belas, R. Expression of tropodithietic acid biosynthesis is controlled by a novel autoinducer. J. Bacteriol. 192, 4377–4387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cude, W. N. et al. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl. Environ. Microbiol. 78, 4771–4780 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wagner-Döbler, I. et al. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. ChemBioChem 6, 2195–2206 (2005).

    PubMed  Google Scholar 

  95. Schaefer, A. L. et al. A new class of homoserine lactone quorum-sensing signals. Nature 454, 595–599 (2008).

    CAS  PubMed  Google Scholar 

  96. Rao, D., Webb, J. S. & Kjelleberg, S. Microbial colonization and competition on the marine alga Ulva australis. Appl. Environ. Microbiol. 72, 5547–5555 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B. Sagittula stellata gen. nov, sp. nov, a lignin-transforming bacterium from a coastal environment. Int. J. Systemat. Bacteriol. 47, 773–780 (1997).

    Google Scholar 

  98. Alavi, M., Miller, T., Erlandson, K., Schneider, R. & Belas, R. Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ. Microbiol. 3, 380–396 (2001).

    CAS  PubMed  Google Scholar 

  99. Archer, S. D., Tarran, G. A., Stephens, J. A., Butcher, L. J. & Kimmance, S. A. Combining flow sorting with gas chromatography to determine phytoplankton group-specific intracellular content of dimethylsulphioniopropionate (DMSP). Aquat. Microb. Ecol. 62, 109–121 (2011).

    Google Scholar 

  100. Stefels, J., Steinke, M., Turner, S., Malin, G. & Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83, 245–275 (2007).

    CAS  Google Scholar 

  101. Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209–224 (2000).

    CAS  Google Scholar 

  102. Todd, J. D., Kirkwood, M., Newton-Payne, S. & Johnston, A. W. B. DddW, a third DMSP lyase in a model roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 6, 223–226 (2012).

    CAS  PubMed  Google Scholar 

  103. Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 5116–5122 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Alonso, C., Warnecke, F., Amann, R. & Pernthaler, J. High local and global diversity of Flavobacteria in marine plankton. Environ. Microbiol. 9, 1253–1266 (2007).

    CAS  PubMed  Google Scholar 

  105. Simon, M., Glockner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. 18, 275–284 (1999).

    Google Scholar 

  106. Bauer, M. et al. Whole genome analysis of the marine Bacteroidetes 'Gramella forsetii' reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 8, 2201–2213 (2006).

    CAS  PubMed  Google Scholar 

  107. Gómez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007). This article describes the growth of flavobacteria in response to light owing to expression of the proteorhodopsin gene.

    PubMed  Google Scholar 

  108. González, J. M. et al. Genomics of the proteorhodopsin-containing marine flavobacterium Dokdonia sp. strain MED134. Appl. Environ. Microbiol. 77, 8676–8686 (2011).

    PubMed  PubMed Central  Google Scholar 

  109. Qin, Q. L. et al. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics 11, 247 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS ONE 4, e5299 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Gómez-Pereira, P. R. et al. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environ. Microbiol. 14, 52–66 (2012).

    PubMed  Google Scholar 

  112. Fernandez-Gomez, B. et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 7, 1026–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: the food connection. Frontiers Microbiol. 2, 93–93 (2011).

    Google Scholar 

  114. Rinta-Kanto, J. M., Sun, S., Sharma, S., Kiene, R. P. & Moran, M. A. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ. Microbiol. 14, 228–239 (2012).

    CAS  PubMed  Google Scholar 

  115. Reeves, A. R., Wang, G.-R. & Salyers, A. A. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J. Bacteriol. 179, 643–649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. González, J. et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc. Natl Acad. Sci. USA 105, 8724–8729 (2008).

    PubMed  Google Scholar 

  117. Yoshizawa, S. et al. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl Acad. Sci. USA 111, 6732–6737 (2014). This paper describes the first example of a rhodopsin chloride pump found in flavobacteria.

    CAS  PubMed  Google Scholar 

  118. Sohn, J. H. et al. Kordia algicida gen. nov., sp nov., an algicidal bacterium isolated from red tide. Int. J. Systemat. Evol. Microbiol. 54, 675–680 (2004).

    CAS  Google Scholar 

  119. Skerratt, J. H., Bowman, J. P., Hallegraeff, G., James, S. & Nichols, P. D. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Marine Ecol. Prog. Ser. 244, 1–15 (2002).

    Google Scholar 

  120. Goecke, F., Labes, A., Wiese, J. & Imhoff, J. F. Chemical interactions between marine macroalgae and bacteria. Marine Ecol. Prog. Ser. 409, 267–299 (2010).

    CAS  Google Scholar 

  121. McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55, 49–75 (2001).

    CAS  PubMed  Google Scholar 

  122. Banning, E. C., Casciotti, K. L. & Kujawinski, E. B. Novel strains isolated from a coastal aquifer suggest a predatory role for flavobacteria. FEMS Microbiol. Ecol. 73, 254–270 (2010).

    CAS  PubMed  Google Scholar 

  123. Lambert, G. R. & Smith, G. D. The hydrogen metabolism of cyanobacteria (blue-green algae). Biol. Rev. 56, 589–660 (1981).

    CAS  Google Scholar 

  124. Taylor, J. D., Cottingham, S. D., Billinge, J. & Cunliffe, M. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J. 8, 245–248 (2014).

    CAS  PubMed  Google Scholar 

  125. Buchan, A., Hadden, M. & Suzuki, M. T. Development and application of quantiative PCR tools for subgroups of the Roseobacter clade. Appl. Environ. Microbiol. 75, 7543–7547 (2009).

    Google Scholar 

  126. Jooste, P. J. & Hugo, C. J. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. Int. J. Food Microbiol. 53, 81–94 (1999).

    CAS  PubMed  Google Scholar 

  127. Ludwig, W., Euzeby, J. P. & Whitman, W. B. in Bergey's Manual of Systematic Bacteriology Vol. 4 (eds Krieg, N. R. et al.) (Bergey's Manual Trust, 2010).

    Google Scholar 

  128. Hayes, P. R. Studies on marine Flavobacteria. J. General Microbiol. 30, 1–19 (1963).

    CAS  Google Scholar 

  129. Cushing, D. H. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plankton Res. 11, 1–13 (1989).

    Google Scholar 

  130. Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. & Mann, D. G. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) (Academic Press, 2007).

    Google Scholar 

  131. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    CAS  PubMed  Google Scholar 

  132. Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparision with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 9, 359–372 (1995).

    CAS  Google Scholar 

  133. Kroger, N. & Poulsen, N. Diatoms — from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 42, 83–107 (2008).

    CAS  PubMed  Google Scholar 

  134. Sumper, M. & Brunner, E. Silica biomineralisation in diatoms: the model organism Thalassiosira pseudonana. ChemBioChem 9, 1187–1194 (2008).

    CAS  PubMed  Google Scholar 

  135. Henderiks, J. & Rickaby, R. E. M. A coccolithophore concept for constraining the Cenozoic carbon cycle. Biogeosciences 4, 323–329 (2007).

    CAS  Google Scholar 

  136. Legendre, L. & Lefevre, J. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9, 69–77 (1995).

    Google Scholar 

  137. Shutler, J. D. et al. Coccolithophore surface distributions in the North Atlantic and their modulation of the air–sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences 10, 2699–2709 (2013).

    CAS  Google Scholar 

  138. Merico, A., Tyrrell, T. & Cokacar, T. Is there any relationship between phytoplankton seasonal dynamics and the carbonate system? J. Marine Systems 59, 120–142 (2006).

    Google Scholar 

  139. Iglesias-Rodríguez, M. D. et al. Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochem. Cycles 16, 1100 (2002).

    Google Scholar 

  140. Harada, N. et al. Enhancement of coccolithophorid blooms in the Bering Sea by recent environmental changes. Global Biogeochem. Cycles 26, GB2036 (2012).

    Google Scholar 

  141. Wilson, W. H. et al. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J. Marine Biol. Associ. 82, 369–377 (2002).

    Google Scholar 

  142. Peperzak, L. & Gaebler-Schwarz, S. Current knowledge of the life cycles of Phaeocystis globosa and Phaeocystis antarctica (Prymnesiophyceae) J. Phycol. 48, 514–517 (2012).

    PubMed  Google Scholar 

  143. Alderkamp, A. C. et al. Dynamics in carbohydrate composition of Phaeocystis pouchetii colonies during spring blooms in mesocosms. J. Sea Res. 55, 169–181 (2006).

    CAS  Google Scholar 

  144. Brussaard, C. P. D., Gast, G. J., van Duyl, F. C. & Riegman, R. Impact of phytoplankton bloom magnitude on a pelagic microbial food web. Marine Ecol. Progress Series 144, 211–221 (1996).

    Google Scholar 

  145. Nejstgaard, J. C. et al. Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry 83, 147–172 (2007).

    Google Scholar 

  146. Rousseau, V. et al. Characterization of Phaeocystis globosa (Prymnesiophyceae), the blooming species in the Southern North Sea. J. Sea Res. 76, 105–113 (2013).

    Google Scholar 

Download references

Acknowledgements

A.B. acknowledges support from the US National Science Foundation Division of Ocean Sciences (OCE-0550485 and OCE-1061352). J.M.G. was supported by the CONSOLIDER-INGENIO2010 Program (CSD2008-00077) and MarineGems (CTM2010-20361) from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Buchan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Autotrophs

Organisms that convert inorganic carbon, such as CO2, into organic compounds.

Biological pump

The export of phytosynthetically derived carbon via the sinking of particles from the illuminated surface ocean to the deep ocean. Approximately 0.1% of the carbon that is fixed in the ocean is buried in marine sediments via this process.

Heterotrophic

A term used to describe an organism that uses organic carbon compounds, such as dissolved organic matter and particulate organic matter, to satisfy its carbon requirement but that cannot fix carbon.

Copiotrophic

A term used to describe an organism that thrives in, and is well adapted to, high-nutrient conditions, unlike oligotrophic organisms, which are adapted to growth in low-nutrient conditions.

Microbial loop

The microbial assimilation of dissolved organic matter into biomass and its transfer to higher trophic levels as a result of grazing by zooplankton.

Microbial carbon pump

A process by which a major reservoir of dissolved organic carbon is sequestered in the ocean by a series of heterotrophic microbial transformations of organic matter, which renders it increasingly resistant to biological degradation.

Dissolved organic matter

(DOM). The pool of organic matter that is operationally defined as that which passes through a filter with pores of 0.22–0.45 μm in diameter. DOM can be further classified on the basis of bioavailability.

Particulate organic matter

(POM). The pool of organic matter that is operationally defined as that which is retained on a filter with pores of 0.22–0.45 μm in diameter.

Cloud condensation nuclei

Aerosols (that is, liquid droplets or solid particles) suspended in the air that lead to the condensation of water vapour to form clouds.

Solar backscattered radiation

Solar radiation from the sun that is reflected back towards space by the atmosphere, clouds and the surface of the Earth.

Bacterioplankton

Free-living, planktonic bacteria and archaea that reside in an aquatic system.

Linnaean classification system

The taxonomic nomenclature that was developed by Carl Linnaeus, in which distinct hierarchical groups, such as phylum, class, order, family, genus and species are defined.

Remineralization

The transformation of organic matter to an inorganic form. This term is most often used to describe the conversion of organic carbon to CO2, which is a central component of the carbon cycle.

Euphotic zone

The layer of the water column that receives sufficient light to support photosynthesis. This zone is usually the upper 200 metres, but the lower boundary varies as the concentration of living and non-living particles change the turbidity of the water.

Benthic zone

The region of the water column that extends from immediately above the sediment surface to immediately below the sediment surface. Sinking material, such as marine snow, accumulates in this zone.

Pelagic zone

The upper region of the water column that is distant from land and from the seafloor. Water turbidity and light intensity do not shift the demarcation of the pelagic zone.

Diatomaceous earth

The remaining particulate matter from dead and decayed diatoms, which are heavily enriched in silica frustules.

Phylotypes

Sequences or groups of sequences that share a certain level of homology, which enables evolutionary relatedness to be inferred.

Ecological r-strategist model

Model organisms with relatively large genomes that encode diverse metabolic capabilities, which enable them to rapidly respond to increases in carbon and nutrients.

Phytodetrital material

Non-living organic matter that is derived from phytoplankton.

Auxins

A class of hormones that stimulate growth and regulate the behaviour of phototrophs.

Holdfasts

Adhesive structures that facilitate the attachment of a cell to a surface.

Aerobic anoxygenic phototrophy

A photoheterotrophic strategy in which bacteriochlorophyll a reaction centres are excited by the absorption of light and pass electrons through a series of carrier proteins that pump protons out of the cell, which contributes to the electrochemical gradient of the cell.

Photoheterotrophic

A term used to describe a heterotroph that uses light (that is, photons) to fuel energy-requiring metabolic processes.

Fosmid libraries

Libraries of cloning vectors derived from the bacterial F plasmid that stably maintain large fragments of DNA and are often used for sequencing or phenotypic screening.

Rhodopsins

Transmembrane proteins that function as light-driven ion pumps; they are present in all three domains of life.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buchan, A., LeCleir, G., Gulvik, C. et al. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12, 686–698 (2014). https://doi.org/10.1038/nrmicro3326

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3326

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing