Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A versatile framework for microbial engineering using synthetic non-coding RNAs

Key Points

  • This Review focuses on the design, engineering and application of synthetic non-coding RNA (ncRNA) devices for microbial engineering.

  • Recent progress in the development of ncRNA regulators that control gene regulation at the DNA level — in particular, the CRISPR interference (CRISPRi) system — are discussed.

  • Several types of ncRNA regulators that control gene expression at the levels of transcription, translation and mRNA stability are described.

  • In addition, synthetic ncRNA regulators that function as scaffold molecules for protein-level control are described, as well as ncRNA sensors (such as riboswtiches and aptazymes) that respond to chemical or protein ligands.

  • We highlight ncRNA-mediated genetic circuits and their uses in several microbial engineering applications.

Abstract

Synthetic non-coding RNAs have emerged as a versatile class of molecular devices that have a diverse range of programmable functions, including signal sensing, gene regulation and the modulation of molecular interactions. Owing to their small size and the central role of Watson–Crick base pairing in determining their structure, function and interactions, several distinct types of synthetic non-coding RNA regulators that are functional at the DNA, mRNA and protein levels have been experimentally characterized and computationally modelled. These engineered devices can be incorporated into genetic circuits, enabling the more efficient creation of complex synthetic biological systems. In this Review, we summarize recent progress in engineering synthetic non-coding RNA devices and their application to genetic and cellular engineering in a broad range of microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CRISPR–Cas system for gene repression and activation in bacteria.
Figure 2: ncRNA regulators of transcription and translation.
Figure 3: Ligand-sensing synthetic riboswitches and trans-acting ncRNAs.
Figure 4: Three basic types of ncRNA regulatory circuits.
Figure 5: A universal ncRNA gene regulatory platform.

Similar content being viewed by others

References

  1. Alper, H. & Stephanopoulos, G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nature Rev. Microbiol. 7, 715–723 (2009).

    CAS  Google Scholar 

  2. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    CAS  PubMed  Google Scholar 

  3. Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 488, 320–328 (2012).

    CAS  PubMed  Google Scholar 

  4. Beerli, R. R. & Barbas, C. F. Engineering polydactyl zinc-finger transcription factors. Nature Biotech. 20, 135–141 (2002).

    CAS  Google Scholar 

  5. Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor–regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotech. 30, 354–359 (2012).

    CAS  Google Scholar 

  6. Kim, H. D., Shay, T., O'Shea, E. K. & Regev, A. Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325, 429–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Voigt, C. A. Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17, 548–557 (2006).

    CAS  PubMed  Google Scholar 

  8. Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A. Genetic programs constructed from layered logic gates in single cells. Nature 491, 249–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    CAS  PubMed  Google Scholar 

  10. Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    PubMed  PubMed Central  Google Scholar 

  11. Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    CAS  PubMed  Google Scholar 

  12. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  13. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  14. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    CAS  PubMed  Google Scholar 

  15. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    CAS  PubMed  Google Scholar 

  16. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dennis, P. P. & Omer, A. Small non-coding RNAs in Archaea. Curr. Opin. Microbiol. 8, 685–694 (2005).

    CAS  PubMed  Google Scholar 

  19. Gottesman, S. & Storz, G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 1, 1–16 (2010).

    Google Scholar 

  20. Storz, G., Opdyke, J. A. & Wassarman, K. M. Regulating bacterial transcription with small RNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 269–273 (2006).

    CAS  PubMed  Google Scholar 

  21. Fozo, E. M., Hemm, M. R. & Storz, G. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72, 579–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    CAS  PubMed  Google Scholar 

  23. Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37 (2005).

    CAS  PubMed  Google Scholar 

  24. Marzi, S. et al. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 1019–1031 (2007).

    CAS  PubMed  Google Scholar 

  25. Alifano, P. et al. Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev. 8, 3021–3031 (1994).

    CAS  PubMed  Google Scholar 

  26. Doherty, E. Ribozyme structures and mechanisms. Annu. Rev. Biophys. Biomol. Struct. 30, 457–475 (2001).

    CAS  PubMed  Google Scholar 

  27. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nature Rev. Genet. 8, 776–790 (2007).

    CAS  PubMed  Google Scholar 

  28. Davidson, E. A. & Ellington, A. D. Synthetic RNA circuits. Nature Chem. Biol. 3, 23–28 (2007).

    CAS  Google Scholar 

  29. Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nature Biotech. 24, 545–554 (2006).

    CAS  Google Scholar 

  30. Dawid, A., Cayrol, B. & Isambert, H. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation. Phys. Biol. 6, 025007 (2009).

    PubMed  Google Scholar 

  31. Liang, J. C., Bloom, R. J. & Smolke, C. D. Engineering biological systems with synthetic RNA molecules. Mol. Cell 43, 915–926 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lucks, J. B., Qi, L., Whitaker, W. R. & Arkin, A. P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    PubMed  Google Scholar 

  33. uerta-Fernández, E., Romero-López, C., Barroso-delJesus, A. & Berzal-Herranz, A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol. Rev. 27, 75–97 (2003).

    Google Scholar 

  34. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011). This study describes synthetic scaffolding ncRNA devices that mediate protein localization and protein–protein interactions.

    CAS  PubMed  Google Scholar 

  35. Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008). This study demonstrates the rational design of ligand-sensing ncRNA modules into higher-order logic gates.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D. & Arkin, A. P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl Acad. Sci. USA 108, 8617–8622 (2011). This study describes the rational engineering of orthogonally acting transcriptional ncRNA devices that can form logics and signalling cascades.

    CAS  PubMed  Google Scholar 

  37. Kimoto, M. & Hirao, I. Site-specific incorporation of extra components into RNA by transcription using unnatural base pair systems. Methods Mol. Biol. 634, 355–369 (2010).

    CAS  PubMed  Google Scholar 

  38. Seo, Y. J., Malyshev, D. A., Lavergne, T., Ordoukhanian, P. & Romesberg, F. E. Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J. Am. Chem. Soc. 133, 19878–19888 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Topp, S. et al. Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl. Environ. Microbiol. 76, 7881–7884 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Roth, A. & Breaker, R. R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharp, P. A. The centrality of RNA. Cell 136, 577–580 (2009).

    CAS  PubMed  Google Scholar 

  42. Wang, Y.-H., Wei, K. Y. & Smolke, C. D. Synthetic biology: advancing the design of diverse genetic systems. Annu. Rev. Chem. Biomol. Eng. 4, 69–102 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Chappell, J. et al. The centrality of RNA for engineering gene expression. Biotechnol. J. 8, 1379–1395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  45. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139, 945–956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    CAS  PubMed  Google Scholar 

  47. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nature Rev. Microbiol. 9, 467–477 (2011).

    CAS  Google Scholar 

  49. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11, 181–190 (2010).

    CAS  PubMed  Google Scholar 

  53. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nature Biotech. 31, 233–239 (2013).

    CAS  Google Scholar 

  54. Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Waaijers, S. et al. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics 195, 1187–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren, X. et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc. Natl Acad. Sci. USA 110, 19012–19017 (2013).

    CAS  PubMed  Google Scholar 

  57. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nature Biotech. 31, 227–229 (2013).

    CAS  Google Scholar 

  58. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR–Cas system. Nature Biotech. 31, 686–688 (2013).

    CAS  Google Scholar 

  59. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013). This study is the first experimental demonstration that a repurposed CRISPR–Cas system can be used for RNA-guided transcriptional silencing of target genes in bacterial and mammalian cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    CAS  PubMed  Google Scholar 

  66. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). This study shows that the CRISPR–Cas system can be used to deliver transcriptional activators or repressors for efficient and specific gene regulation in eukaryotes.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protoc. 8, 2180–2196 (2013).

    CAS  Google Scholar 

  69. Farzadfard, F., Perli, S. D. & Lu, T. K. Tunable and multi-functional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604–613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Meth. 10, 1116–1121 (2013).

    CAS  Google Scholar 

  71. Novick, R. P., Iordanescu, S., Projan, S. J., Kornblum, J. & Edelman, I. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59, 395–404 (1989).

    CAS  PubMed  Google Scholar 

  72. Brantl, S. & Wagner, E. G. H. An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli. J. Bacteriol. 184, 2740–2747 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Takahashi, M. K. & Lucks, J. B. A modular strategy for engineering orthogonal chimeric RNA transcription regulators. Nucleic Acids Res. 41, 7577–7588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Simons, R. W. & Kleckner, N. Translational control of IS10 transposition. Cell 34, 683–691 (1983).

    CAS  PubMed  Google Scholar 

  75. Jain, C. IS10 antisense control in vivo is affected by mutations throughout the region of complementarity between the interacting RNAs. J. Mol. Biol. 246, 585–594 (1995).

    CAS  PubMed  Google Scholar 

  76. Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B. & Arkin, A. P. Rationally designed families of orthogonal RNA regulators of translation. Nature Chem. Biol. 8, 447–454 (2012). This study demonstrates, both experimentally and computationally, that a large set of orthogonal ncRNA devices can be rationally designed on the basis of a thermodynamic model and can be used to control translation.

    CAS  Google Scholar 

  77. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotech. 22, 841–847 (2004). This study is the first demonstration that engineered ncRNA regulators, known as riboregulators, can be used for the post-transcriptional control of gene expression.

    CAS  Google Scholar 

  78. Rodrigo, G., Landrain, T. E. & Jaramillo, A. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc. Natl Acad. Sci. USA 109, 15271–15276 (2012).

    CAS  PubMed  Google Scholar 

  79. Liu, C. C. et al. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Meth. 9, 1088–1094 (2012).

    CAS  Google Scholar 

  80. Kim, D. & Rossi, J. RNAi mechanisms and applications. Biotechniques 44, 613–616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nature Biotech. 25, 795–801 (2007).

    CAS  Google Scholar 

  82. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011). This study reports a complex RNAi genetic circuit that can sense multiple microRNA signals for the identification of cancer cell types.

    CAS  PubMed  Google Scholar 

  83. Carrier, T. A. & Keasling, J. D. Library of synthetic 5′ secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol. Prog. 15, 58–64 (1999).

    CAS  PubMed  Google Scholar 

  84. Win, M. N. & Smolke, C. D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl Acad. Sci. USA 104, 14283–14288 (2007).

    CAS  PubMed  Google Scholar 

  85. Sharma, V., Yamamura, A. & Yokobayashi, Y. Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synth. Biol. 1, 6–13 (2012).

    CAS  PubMed  Google Scholar 

  86. Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature Biotech. 31, 170–174 (2013). This study applies design methods to generate synthetic ncRNAs for the combinatorial knockdown of multiple genes in metabolic pathways.

    CAS  Google Scholar 

  87. Bunka, D. H. J. & Stockley, P. G. Aptamers come of age — at last. Nature Rev. Microbiol. 4, 588–596 (2006).

    CAS  Google Scholar 

  88. Dueber, J. E., Yeh, B. J., Chak, K. & Lim, W. A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

    CAS  PubMed  Google Scholar 

  89. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotech. 27, 753–759 (2009).

    CAS  Google Scholar 

  90. Whitaker, W. R., Davis, S. A., Arkin, A. P. & Dueber, J. E. Engineering robust control of two-component system phosphotransfer using modular scaffolds. Proc. Natl Acad. Sci. USA 109, 18090–18095 (2012).

    CAS  PubMed  Google Scholar 

  91. Wei, P. et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 488, 384–388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    CAS  PubMed  Google Scholar 

  93. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Winkler, W. C. & Breaker, R. R. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517 (2005).

    CAS  PubMed  Google Scholar 

  95. Nomura, Y. & Yokobayashi, Y. Reengineering a natural riboswitch by dual genetic selection. J. Am. Chem. Soc. 129, 13814–13815 (2007).

    CAS  PubMed  Google Scholar 

  96. Sharma, V., Nomura, Y. & Yokobayashi, Y. Engineering complex riboswitch regulation by dual genetic selection. J. Am. Chem. Soc. 130, 16310–16315 (2008). This study demonstrates a selection-based method to generate complex ligand-sensing riboswitches.

    CAS  PubMed  Google Scholar 

  97. Lynch, S. A. & Gallivan, J. P. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res. 37, 184–192 (2009).

    CAS  PubMed  Google Scholar 

  98. Chen, X. & Ellington, A. D. Design principles for ligand-sensing, conformation-switching ribozymes. PLoS Comput. Biol. 5, e1000620 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Ogawa, A. Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. RNA 17, 478–488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Culler, S. J., Hoff, K. G. & Smolke, C. D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, Y. Y., Jensen, M. C. & Smolke, C. D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl Acad. Sci. USA 107, 8531–8536 (2010).

    CAS  PubMed  Google Scholar 

  102. Galloway, K. E., Franco, E. & Smolke, C. D. Dynamically reshaping signaling networks to program cell fate via genetic controllers. Science 341, 1235005–1235005 (2013). This study demonstrates the use of ligand-sensing ncRNA devices as tools to study the dynamic signalling networks that are important for cell fate determination.

    PubMed  PubMed Central  Google Scholar 

  103. Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K. & Arkin, A. P. Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. 40, 5775–5786 (2012). This paper describes the rational design of ligand-sensing complex ncRNA regulators that can modulate transcription or translation in trans.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Callura, J. M., Cantor, C. R. & Collins, J. J. Genetic switchboard for synthetic biology applications. Proc. Natl Acad. Sci. USA 109, 5850–5855 (2012). This study demonstrates that ncRNA devices can be programmed as genetic switchboards to regulate multiple metabolic genes for controlling carbon flow through glucose-utilization pathways in E. coli.

    CAS  PubMed  Google Scholar 

  106. Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A. & Arkin, A. P. RNA processing enables predictable programming of gene expression. Nature Biotech. 30, 1002–1006 (2012).

    CAS  Google Scholar 

  107. Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotech. 30, 1137–1142 (2012). References 106 and 107 show that precise precursor mRNA cleavage and processing enables the predictable programming of gene expression devices.

    CAS  Google Scholar 

  108. Bayer, T. S. & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotech. 23, 337–343 (2005).

    CAS  Google Scholar 

  109. Carothers, J. M., Goler, J. A., Juminaga, D. & Keasling, J. D. Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334, 1716–1719 (2011). This paper reports a model-based method to engineer ligand-sensing RNA devices that enable quantitative control of gene expression.

    CAS  PubMed  Google Scholar 

  110. Ruder, W. C., Lu, T. & Collins, J. J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    CAS  PubMed  Google Scholar 

  111. Rodrigo, G., Landrain, T. E., Majer, E., Daròs, J. A. & Jaramillo, A. Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Comput. Biol. 9, e1003172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  113. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  114. Ceres, P., Trausch, J. J. & Batey, R. T. Engineering modular “ON” RNA switches using biological components. Nucleic Acids Res. 41, 10449–10461 (2013). References 112 and 114 demonstrate for the first time that synthetic RNA aptamers can be selected in vitro for highly specific binding to chemicals.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liang, J. C., Chang, A. L., Kennedy, A. B. & Smolke, C. D. A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity. Nucleic Acids Res. 40, e154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kosuri, S. et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 14024–14029 (2013).

    CAS  PubMed  Google Scholar 

  117. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA 108, 11063–11068 (2011).

    CAS  PubMed  Google Scholar 

  118. Aviran, S. et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl Acad. Sci. USA 108, 11069–11074 (2011).

    CAS  PubMed  Google Scholar 

  119. Kladwang, W., VanLang, C. C., Cordero, P. & Das, R. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nature Chem. 3, 954–962 (2011).

    CAS  Google Scholar 

  120. Tyrrell, J., McGinnis, J. L., Weeks, K. M. & Pielak, G. J. The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 52, 8777–8785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    CAS  PubMed  Google Scholar 

  123. Mutalik, V. K. et al. Quantitative estimation of activity and quality for collections of functional genetic elements. Nature Meth. 10, 347–353 (2013).

    CAS  Google Scholar 

  124. Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Meth. 10, 354–360 (2013).

    CAS  Google Scholar 

  125. Del Vecchio, D., Ninfa, A. J. & Sontag, E. D. Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4, 161 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    CAS  PubMed  Google Scholar 

  127. Chen, D. & Arkin, A. P. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol. Syst. Biol. 8, 620 (2012).

    PubMed  PubMed Central  Google Scholar 

  128. Schmiedel, J. M., Axmann, I. M. & Legewie, S. Multi-target regulation by small RNAs synchronizes gene expression thresholds and may enhance ultrasensitive behavior. PLoS ONE 7, e42296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hirao, I., Spingola, M., Peabody, D. & Ellington, A. D. The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants. Mol. Divers. 4, 75–89 (1998).

    CAS  PubMed  Google Scholar 

  130. Mattick, J. S. RNA regulation: a new genetics? Nature Rev. Genet. 5, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  131. Mattick, J. S. The hidden genetic program of complex organisms. Sci. Am. 291, 60–67 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

L.S.Q. acknowledges support from the University of California San Francisco Center for Systems and Synthetic Biology and the US National Institutes of Health (NIH) Office Of The Director (OD). L.S.Q. and A.P.A. acknowledge support from the California Institute for Quantitative Biomedical Research (QB3). This work was supported by NIH Director's Early Independence Award (grant OD017887 to L.S.Q.), NIH R01 (grant DA036858 to L.S.Q.), NIH P50 (grant GM102706 to A.P.A.), and US National Science Foundation (NSF) SynBERC EEC-0540879 (A.P.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei S. Qi or Adam P. Arkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Toggle switches

Bistable genetic circuits that contain two mutually inhibitory repressors.

Oscillators

Genetic circuits that produce a repetitive and oscillating signal with fixed time periods.

Molecular counters

Circuits that can compute and store the number of times a particular event has occurred.

Non-coding RNAs

(ncRNAs). Functional RNA molecules that are not translated into proteins.

Small RNAs

(sRNAs). Non-coding RNA molecules that are typically 50–250 nucleotides in length.

Antisense RNAs

Single-stranded RNAs that are complementary to an mRNA.

RNA interference

(RNAi). A process in which RNA molecules inhibit gene expression via the degradation of specific mRNA molecules.

MicroRNAs

Small non-coding RNA molecules (usually 22 nucleotides in length) that are often expressed in plants and animals and that control gene expression by transcriptional or post-transcriptional mechanisms.

Riboswitches

Regulatory RNA elements of mRNAs; they bind to small molecules and regulate expression of the mRNA accordingly.

Ribozymes

RNA molecules that are capable of catalysing specific biochemical reactions.

Orthogonally acting RNA elements

RNA elements that have distinct target-binding specificities and do not exhibit crosstalk.

Protospacer adjacent motif

(PAM). A short, conserved DNA sequence (usually 2–5 base pairs) that is adjacent to the binding site of crRNA.

Native elongating transcript sequencing

(NET-seq). A deep sequencing technology used to identify nascent transcripts that are associated with an elongating RNA polymerase.

Operons

Functional units of genomic DNA that contain a cluster of genes under the control of a single promoter.

Seed region

The minimal region on the small guide RNA that enables target recognition and binding.

Insertion sequence

A short DNA sequence that functions as a simple transposable element.

Riboregulator

An RNA molecule that responds to a signal nucleic acid (DNA or RNA) by Watson–Crick base pairing.

Logic evaluators or logic gates

Devices that carry out logical operations using one or more signal inputs to produce a single logical output. For example, a four-input logic gate carries out logical computation using four inputs.

Aptazymes

Complex RNA devices that are composed of a ligand-sensing domain and a ribozyme domain that controls gene expression.

Aptamers

DNA, RNA or peptide molecules that bind to specific ligands. Aptamers that are composed of RNA are called RNA aptamers.

Metabolic flux

The rate of turnover of metabolite molecules through a metabolic pathway.

NOR logic computation

An inverted OR gate. NOR logic is a universal gate that can be combined to form every other type of logic gate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Arkin, A. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat Rev Microbiol 12, 341–354 (2014). https://doi.org/10.1038/nrmicro3244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3244

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology