Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cryptic sexual strategies of human fungal pathogens

Key Points

  • Sexual reproduction is a common attribute of eukaryotes owing to its potential to generate variability among individuals and to provide an advantage over species that are strictly asexual. Human pathogens are in a constant evolutionary 'arms race' with their hosts and sexual reproductive strategies enable these species to 'keep up'.

  • Accumulating genetic evidence suggests that most human fungal pathogens retain sexual reproductive machinery, and recent studies into their life cycles have detailed the sexual programmes of these fungi. It is becoming evident that most, it not all, of these species undergo cryptic sex.

  • We discuss the sexual cycles of three of the most prominent human pathogens — Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Although the main tenets of sexual reproduction are conserved, these species exhibit specialized sexual programmes, including transitions from heterothallism to homothallism and from sexual to parasexual reproduction, giving an enigmatic aspect to fungal sexual cycles.

  • Although most fungal pathogens have retained the ability to mate, these species seem to promote inbreeding and the conservation of highly adapted pathogenic strains, which results in largely clonal populations.

  • Sexual reproduction in these species can directly affect pathogenesis via the generation of genetic variants, the emergence of drug-resistant isolates or the modulation of interactions with host cells. The mechanisms that regulate fungal sexual reproduction, as well as the consequences of these specialized programs for host–pathogen interactions, are important as they reveal strategies that enable fungi to survive, mate, colonize and infect the mammalian host.

Abstract

Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asexual and parasexual reproduction in Candida albicans.
Figure 2: Sexual and asexual reproduction in Cryptococcus neoformans.
Figure 3: Sexual and asexual reproduction in Aspergillus fumigatus.
Figure 4: Comparative analysis of sexual reproduction and virulence leads to emerging trends among human fungal pathogens.

Similar content being viewed by others

References

  1. Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973). This paper proposes the Red Queen hypothesis.

    Google Scholar 

  2. Heitman, J. Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8, 86–99 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heitman, J., Sun, S. & James, T. Y. Evolution of fungal sexual reproduction. Mycologia 105, 1–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Lively, C. M. A review of Red Queen models for the persistence of obligate sexual reproduction. J. Hered. 101 S13–S20 (2010).

    Article  PubMed  Google Scholar 

  5. Jokela, J., Dybdahl, M. F. & Lively, C. M. The maintenance of sex, clonal dynamics, and host–parasite coevolution in a mixed population of sexual and asexual snails. Am. Nat. 174 S43–S53 (2009).

    Article  PubMed  Google Scholar 

  6. Morran, L. T. et al. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schulte, R. D., Makus, C. & Schulenburg, H. Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J. Evol. Biol. 26, 1836–1840 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Nyabuga, F. N., Loxdale, H. D., Heckel, D. G. & Weisser, W. W. Coevolutionary fine-tuning: evidence for genetic tracking between a specialist wasp parasitoid and its aphid host in a dual metapopulation interaction. Bull. Entomol. Res. 102, 149–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Zhan, J., Mundt, C. C. & McDonald, B. A. Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: evidence from empirical study in the wheat–Mycosphaerella graminicola system. Int. J. Parasitol. 37, 861–870 (2007). This study explores the Red Queen hypothesis from the 'point of view' of the pathogen.

    Article  CAS  PubMed  Google Scholar 

  11. Heitman, J. Sexual reproduction and the evolution of microbial pathogens. Curr. Biol. 16, R711–R725 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen, K. & Heitman, J. Sex and virulence of human pathogenic fungi. Adv. Genet. 57, 143–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009). This study provides genome analysis of multiple species in the Candida clade and reveals extensive rewiring of the regulation of mating and meiosis in these species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. C., Ni, M., Li, W., Shertz, C. & Heitman, J. The evolution of sex: a perspective from the fungal kingdom. Microbiol. Mol. Biol. Rev. 74, 298–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schurko, A. M. & Logsdon, J. M., Jr. Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays 30, 579–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Reedy, J. L., Floyd, A. M. & Heitman, J. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19, 891–899 (2009). This study establishes that a complete sexual cycle occurs in C. lusitaniae , although it lacks the conserved genes that are often considered to be essential for meiosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fraser, J. A. & Heitman, J. Chromosomal sex-determining regions in animals, plants and fungi. Curr. Opin. Genet. Dev. 15, 645–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, S. K.,Jr & Bennett, R. J. Fungal mating pheromones: choreographing the dating game. Fungal Genet. Biol. 48, 668–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lengeler, K. B. et al. Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1, 704–718 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fraser, J. A. et al. Chromosomal translocation and segmental duplication in Cryptococcus neoformans. Eukaryot. Cell 4, 401–406 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsueh, Y. P., Fraser, J. A. & Heitman, J. Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans. Eukaryot. Cell 7, 1847–1855 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fraser, J. A. & Heitman, J. Evolution of fungal sex chromosomes. Mol. Microbiol. 51, 299–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hsueh, Y. P., Idnurm, A. & Heitman, J. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet. 2, e184 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sun, S., Hsueh, Y. P. & Heitman, J. Gene conversion occurs within the mating-type locus of Cryptococcus neoformans during sexual reproduction. PLoS Genet. 8, e1002810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Srikantha, T. et al. Nonsex genes in the mating type locus of Candida albicans play roles in a/α biofilm formation, including impermeability and fluconazole resistance. PLoS Pathog. 8, e1002476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Findley, K. et al. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLoS Genet. 8, e1002528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tibayrenc, M., Kjellberg, F. & Ayala, F. J. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl Acad. Sci. USA 87, 2414–2418 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Magwene, P. M. et al. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 1987–1992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alby, K., Schaefer, D. & Bennett, R. J. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460, 890–893 (2009). This paper provides the first demonstration that C. albicans can undergo same-sex homothallic mating as well as opposite-sex heterothallic mating.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwon-Chung, K. J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68, 821–833 (1976).

    Article  CAS  PubMed  Google Scholar 

  31. Lengeler, K. B., Cox, G. M. & Heitman, J. Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect. Immun. 69, 115–122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cogliati, M., Esposto, M. C., Clarke, D. L., Wickes, B. L. & Viviani, M. A. Origin of Cryptococcus neoformans var. neoformans diploid strains. J. Clin. Microbiol. 39, 3889–3894 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, X., Hull, C. M. & Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017–1021 (2005). This paper establishes that monokaryotic fruiting in C. neoformans actually represents a novel form of unisexual α–α mating in this species.

    Article  CAS  PubMed  Google Scholar 

  34. Bui, T., Lin, X., Malik, R., Heitman, J. & Carter, D. Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, α mating type populations. Eukaryot. Cell 7, 1771–1780 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fraser, J. A. et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364 (2005). This paper shows that the major genotype responsible for an outbreak of C. gattii that initiated on Vancouver Island was due to the formation of a hypervirulent strain produced by same-sex mating.

    Article  CAS  PubMed  Google Scholar 

  36. Byrnes, E. J., 3rd et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the Northwest United States. PLoS Pathog. 6, e1000850 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kwon-Chung, K. J. & Bennett, J. E. Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol. 108, 337–340 (1978).

    Article  CAS  PubMed  Google Scholar 

  38. Schoustra, S. E., Debets, A. J., Slakhorst, M. & Hoekstra, R. F. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet. 3, e68 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Forche, A. et al. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6, e110 (2008). This study shows that the sexual cycle of C. albicans results in the generation of recombinant progeny that have diverse phenotypes.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ni, M. et al. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans. PLoS Biol. 11, e1001653 (2013). This study shows that the sexual cycle of C. neoformans results in the generation of recombinant progeny that have diverse phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morrow, C. A. & Fraser, J. A. Ploidy variation as an adaptive mechanism in human pathogenic fungi. Semin. Cell Dev. Biol. 24, 339–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Selmecki, A., Bergmann, S. & Berman, J. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol. Microbiol. 55, 1553–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Sionov, E., Lee, H., Chang, Y. C. & Kwon-Chung, K. J. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6, e1000848 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Rancati, G. et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135, 879–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ni, M., Feretzaki, M., Sun, S., Wang, X. & Heitman, J. Sex in fungi. Annu. Rev. Genet. 45, 405–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Phadke, S. S., Feretzaki, M. & Heitman, J. Unisexual reproduction enhances fungal competitiveness by promoting habitat exploration via hyphal growth and sporulation. Eukaryot. Cell 12, 1155–1159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Howe, D. K. & Sibley, L. D. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J. Infect. Dis. 172, 1561–1566 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Wendte, J. M. et al. Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii. PLoS Genet. 6, e1001261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poxleitner, M. K. et al. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319, 1530–1533 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Dixon, M. W., Thompson, J., Gardiner, D. L. & Trenholme, K. R. Sex in Plasmodium: a sign of commitment. Trends Parasitol. 24, 168–175 (2008).

    Article  PubMed  Google Scholar 

  52. Xu, J. in Sex in fungi (eds Heitman, J., Kronstad, J. W., Taylor, J. W. & Casselton, L. A.) 461–475 (ASM Press, 2007).

    Google Scholar 

  53. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36, 1–53 (2010).

    Article  PubMed  Google Scholar 

  54. Hull, C. M., Raisner, R. M. & Johnson, A. D. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289, 307–310 (2000). This study provides the first demonstration that C. albicans can undergo sexual mating, in this case using strains that were inoculated into a mouse model of systemic infection.

    Article  CAS  PubMed  Google Scholar 

  55. Magee, B. B. & Magee, P. T. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289, 310–313 (2000). This study shows that C. albicans strains can mate, in this case using strains that were co-incubated on laboratory agar.

    Article  CAS  PubMed  Google Scholar 

  56. Bennett, R. J. & Johnson, A. D. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22, 2505–2515 (2003). This paper shows that C. albicans tetraploid cells can undergo a parasexual programme of chromosome loss instead of meiosis to return to the diploid state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bennett, R. J. & Johnson, A. D. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59, 233–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hull, C. M. & Johnson, A. D. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285, 1271–1275 (1999). This study provides the first clue towards the discovery of a C. albicans sexual cycle by identifying a mating type-like locus.

    Article  CAS  PubMed  Google Scholar 

  59. Morschhauser, J. Regulation of white–opaque switching in Candida albicans. Med. Microbiol. Immunol. 199, 165–172 (2010).

    Article  PubMed  CAS  Google Scholar 

  60. Huang, G. Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 3, 251–261 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huang, G., Srikantha, T., Sahni, N., Yi, S. & Soll, D. R. CO2 regulates white-to-opaque switching in Candida albicans. Curr. Biol. 19, 330–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, G. et al. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 6, e1000806 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ramirez-Zavala, B., Reuss, O., Park, Y. N., Ohlsen, K. & Morschhauser, J. Environmental induction of white–opaque switching in Candida albicans. PLoS Pathog. 4, e1000089 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lachke, S. A., Lockhart, S. R., Daniels, K. J. & Soll, D. R. Skin facilitates Candida albicans mating. Infect. Immun. 71, 4970–4976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dumitru, R. et al. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot. Cell 6, 465–472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller, M. G. & Johnson, A. D. White–opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302 (2002). This paper shows that the mating type-like locus controls the white–opaque phenotypic switch in C. albicans and that opaque cells are the mating-competent form of the species.

    Article  CAS  PubMed  Google Scholar 

  67. Pujol, C. et al. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3, 1015–1027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Porman, A. M., Alby, K., Hirakawa, M. P. & Bennett, R. J. Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. Proc. Natl Acad. Sci. USA 108, 21158–21163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnson, A. The biology of mating in Candida albicans. Nature Rev. Microbiol. 1, 106–116 (2003).

    Article  CAS  Google Scholar 

  70. Berman, J. & Hadany, L. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet. 28, 197–203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006). This paper reveals that chromosome aneuploidy drives increased drug resistance in clinical isolates of C. albicans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Hickman, M. A. et al. The 'obligate diploid' Candida albicans forms mating-competent haploids. Nature 494, 55–59 (2013). This paper provides the first demonstration of a viable haploid state for C. albicans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Graser, Y. et al. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl Acad. Sci. USA 93, 12473–12477 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tibayrenc, M. Are Candida albicans natural populations subdivided? Trends Microbiol. 5, 253–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Forche, A. et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio 2, e00129–11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pendrak, M. L., Yan, S. S. & Roberts, D. D. Hemoglobin regulates expression of an activator of mating-type locus α genes in Candida albicans. Eukaryot. Cell 3, 764–775 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Daniels, K. J. Srikantha, T., Lockhart, S. R., Pujol, C. & Soll, D. R. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25, 2240–2252 (2006). This study demonstrates the role of white and opaque cells in the formation of 'sexual biofilms'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, J., Chen, J., Lane, S. & Liu, H. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol. Microbiol. 46, 1335–1344 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Soll, D. R. Candida biofilms: is adhesion sexy? Curr. Biol. 18, R717–R720 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Lin, C. H. et al. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. PLoS Pathog. 9, e1003305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, Y. N., Daniels, K. J., Pujol, C. Srikantha, T. & Soll, D. R. Candida albicans forms a specialized “sexual” as well as “pathogenic” biofilm. Eukaryot. Cell 12, 1120–1131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Finkel, J. S. & Mitchell, A. P. Genetic control of Candida albicans biofilm development. Nature Rev. Microbiol. 9, 109–118 (2011).

    Article  CAS  Google Scholar 

  84. Soll, D. R. Why does Candida albicans switch? FEMS Yeast Res. 9, 973–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Alby, K. & Bennett, R. J. Interspecies pheromone signaling promotes biofilm formation and same-sex mating in Candida albicans. Proc. Natl Acad. Sci. USA 108, 2510–2515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hull, C. M. & Heitman, J. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36, 557–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Perfect, J. R. & Casadevall, A. Cryptococcosis. Infect. Dis. Clin. North Am. 16, 837–874 (2002).

    Article  PubMed  Google Scholar 

  88. Barchiesi, F. et al. Comparative analysis of pathogenicity of Cryptococcus neoformans serotypes A, D and AD in murine cryptococcosis. J. Infect. 51, 10–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Hull, C. M., Davidson, R. C. & Heitman, J. Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1α. Genes Dev. 16, 3046–3060 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hull, C. M., Boily, M. J. & Heitman, J. Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 4, 526–535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stanton, B. C., Giles, S. S., Staudt, M. W., Kruzel, E. K. & Hull, C. M. Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans. PLoS Genet. 6, e1000860 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kwon-Chung, K. J. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67, 1197–1200 (1975). References 30 and 92 provide the initial description of the C. neoformans sexual cycle.

    Article  CAS  PubMed  Google Scholar 

  93. Kruzel, E. K. & Hull, C. M. Establishing an unusual cell type: how to make a dikaryon. Curr. Opin. Microbiol. 13, 706–711 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Litvintseva, A. P. et al. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot. Cell 2, 1162–1168 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Litvintseva, A. P. & Mitchell, T. G. Population genetic analyses reveal the African origin and strain variation of Cryptococcus neoformans var. grubii. PLoS Pathog. 8, e1002495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nielsen, K. et al. Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect. Immun. 71, 4831–4841 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wickes, B. L., Mayorga, M. E., Edman, U. & Edman, J. C. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc. Natl Acad. Sci. USA 93, 7327–7331 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feretzaki, M. & Heitman, J. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet. 9, e1003688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin, X. et al. αADα hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet. 3, 1975–1990 (2007).

    CAS  PubMed  Google Scholar 

  100. Lin, X. et al. Diploids in the Cryptococcus neoformans serotype A population homozygous for the α mating type originate via unisexual mating. PLoS Pathog. 5, e1000283 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Tscharke, R. L., Lazera, M., Chang, Y. C., Wickes, B. L. & Kwon-Chung, K. J. Haploid fruiting in Cryptococcus neoformans is not mating type α-specific. Fungal Genet. Biol. 39, 230–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Lin, X., Huang, J. C., Mitchell, T. G. & Heitman, J. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATα allele enhances filamentation. PLoS Genet. 2, e187 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Byrnes, E. J., 3rd & Marr, K. A. The outbreak of Cryptococcus gattii in western North America: epidemiology and clinical issues. Curr. Infect. Dis. Rep. 13, 256–261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Byrnes, E. J., 3rd et al. Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J. Infect. Dis. 199, 1081–1086 (2009).

    Article  PubMed  Google Scholar 

  105. Kwon-Chung, K. J., Edman, J. C. & Wickes, B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect. Immun. 60, 602–605 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nielsen, K. et al. Interaction between genetic background and the mating-type locus in Cryptococcus neoformans virulence potential. Genetics 171, 975–983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nielsen, K. et al. Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73, 4922–4933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Giles, S. S., Dagenais, T. R., Botts, M. R., Keller, N. P. & Hull, C. M. Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect. Immun. 77, 3491–3500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Velagapudi, R., Hsueh, Y. P., Geunes-Boyer, S., Wright, J. R. & Heitman, J. Spores as infectious propagules of Cryptococcus neoformans. Infect. Immun. 77, 4345–4355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Botts, M. R., Giles, S. S., Gates, M. A., Kozel, T. R. & Hull, C. M. Isolation and characterization of Cryptococcus neoformans spores reveal a critical role for capsule biosynthesis genes in spore biogenesis. Eukaryot. Cell 8, 595–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Botts, M. R. & Hull, C. M. Dueling in the lung: how Cryptococcus spores race the host for survival. Curr. Opin. Microbiol. 13, 437–442 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zaragoza, O. et al. Fungal cell gigantism during mammalian infection. PLoS Pathog. 6, e1000945 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Okagaki, L. H. et al. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli. Eukaryot. Cell 10, 1306–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Okagaki, L. H. et al. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog. 6, e1000953 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Crabtree, J. N. et al. Titan cell production enhances the virulence of Cryptococcus neoformans. Infect. Immun. 80, 3776–3785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fraser, R. S. Pulmonary aspergillosis: pathologic and pathogenetic features. Pathol. Annu. 28, 231–277 (1993).

    PubMed  Google Scholar 

  117. Hohl, T. M. & Feldmesser, M. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell 6, 1953–1963 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Latge, J. P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Poggeler, S. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr. Genet. 42, 153–160 (2002). This study is the first to suggest the existence of a sexual cycle in A. fumigatus.

    Article  PubMed  CAS  Google Scholar 

  120. Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Paoletti, M. et al. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15, 1242–1248 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Ronning, C. M. et al. Genomics of Aspergillus fumigatus. Rev. Iberoam. Micol. 22, 223–228 (2005).

    Article  PubMed  Google Scholar 

  123. Grosse, V. & Krappmann, S. The asexual pathogen Aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot. Cell 7, 1724–1732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pyrzak, W., Miller, K. Y. & Miller, B. L. Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans. Eukaryot. Cell 7, 1029–1040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dyer, P. S. & Paoletti, M. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med. Mycol. 43, S7–S14 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Bain, J. M. et al. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J. Clin. Microbiol. 45, 1469–1477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. O'Gorman, C. M., Fuller, H. & Dyer, P. S. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 471–474 (2009). This paper is the first demonstration of a sexual cycle in A. fumigatus , which required the extended incubation of cells for 6 months in the laboratory.

    Article  CAS  PubMed  Google Scholar 

  128. Kwon-Chung, K. J. & Sugui, J. A. Sexual reproduction in Aspergillus species of medical or economical importance: why so fastidious? Trends Microbiol. 17, 481–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Szewczyk, E. & Krappmann, S. Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot. Cell 9, 774–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sugui, J. A. et al. Identification and characterization of an Aspergillus fumigatus “supermater” pair. mBio 2, e00234–11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Alvarez-Perez, S., Blanco, J. L., Alba, P. & Garcia, M. E. Mating type and invasiveness are significantly associated in Aspergillus fumigatus. Med. Mycol. 48, 273–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Cheema, M. S. & Christians, J. K. Virulence in an insect model differs between mating types in Aspergillus fumigatus. Med. Mycol. 49, 202–207 (2011).

    Article  PubMed  Google Scholar 

  133. Paoletti, M. et al. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr. Biol. 17, 1384–1389 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Dyer, P. S. & O'Gorman, C. M. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol. Rev. 36, 165–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Groopman, J. D. & Kensler, T. W. Role of metabolism and viruses in aflatoxin-induced liver cancer. Toxicol. Appl. Pharmacol. 206, 131–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Morgan, J. et al. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med. Mycol. 43, S49–S58 (2005).

    Article  PubMed  Google Scholar 

  137. Horn, B. W., Moore, G. G. & Carbone, I. Sexual reproduction in Aspergillus flavus. Mycologia 101, 423–429 (2009).

    Article  PubMed  Google Scholar 

  138. Horn, B. W., Ramirez-Prado, J. H. & Carbone, I. The sexual state of Aspergillus parasiticus. Mycologia 101, 275–280 (2009).

    Article  PubMed  Google Scholar 

  139. Swilaiman, S. S., O'Gorman, C. M., Balajee, S. A. & Dyer, P. S. Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus. Eukaryot. Cell 12, 962–969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Balajee, S. A., Weaver, M., Imhof, A., Gribskov, J. & Marr, K. A. Aspergillus fumigatus variant with decreased susceptibility to multiple antifungals. Antimicrob. Agents Chemother. 48, 1197–1203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Klein, B. S. & Tebbets, B. Dimorphism and virulence in fungi. Curr. Opin. Microbiol. 10, 314–319 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chiller, T. M., Galgiani, J. N. & Stevens, D. A. Coccidioidomycosis. Infect. Dis. Clin. North Am. 17, 41–57 (2003).

    Article  PubMed  Google Scholar 

  143. Fraser, J. A. et al. Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot. Cell 6, 622–629 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Koufopanou, V., Burt, A., Szaro, T. & Taylor, J. W. Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol. Biol. Evol. 18, 1246–1258 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Edwards, J. A. & Rappleye, C. A. Histoplasma mechanisms of pathogenesis — one portfolio doesn't fit all. FEMS Microbiol. Lett. 324, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Kwon-Chung, K. J. Sexual stage of Histoplasma capsulatum. Science 175, 326 (1972). This paper describes the existence of a sexual cycle in H. capsulatum.

    Article  CAS  PubMed  Google Scholar 

  147. Kwon-Chung, K. J., Weeks, R. J. & Larsh, H. W. Studies on Emmonsiella capsulata (Histoplasma capsulatum). II. Distribution of the two mating types in 13 endemic states of the United States. Am. J. Epidemiol. 99, 44–49 (1974).

    Article  CAS  PubMed  Google Scholar 

  148. Kwon-Chung, K. J., Hill, W. B. & Bennett, J. E. New, special stain for histopathological diagnosis of cryptococcosis. J. Clin. Microbiol. 13, 383–387 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cushion, M. T. Pneumocystis: unraveling the cloak of obscurity. Trends Microbiol. 12, 243–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Smulian, A. G., Sesterhenn, T., Tanaka, R. & Cushion, M. T. The STE3 pheromone receptor gene of Pneumocystis carinii is surrounded by a cluster of signal transduction genes. Genetics 157, 991–1002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, W. et al. Identification of the mating-type (MAT) locus that controls sexual reproduction of Blastomyces dermatitidis. Eukaryot. Cell 12, 109–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McDonough, E. S. & Lewis, A. L. Blastomyces dermatitidis: production of the sexual stage. Science 156, 528–529 (1967). This study is the first to identify a sexual cycle in B. dermatitidis.

    Article  CAS  PubMed  Google Scholar 

  153. Kwon-Chung, K. J. Genetic analysis on the incompatibility system of Ajellomyces dermatitidis. Sabouraudia 9, 231–238 (1971).

    Article  CAS  PubMed  Google Scholar 

  154. Fisher, M. C., Aanensen, D., de Hoog, S. & Vanittanakom, N. Multilocus microsatellite typing system for Penicillium marneffei reveals spatially structured populations. J. Clin. Microbiol. 42, 5065–5069 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fisher, M. C. et al. Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathog. 1, e20 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Woo, P. C. et al. Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Lett. 580, 3409–3416 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Henk, D. A. et al. Clonality despite sex: the evolution of host-associated sexual neighborhoods in the pathogenic fungus Penicillium marneffei. PLoS Pathog. 8, e1002851 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li, C. H. et al. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog. 7, e1002086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Didier, E. S. & Weiss, L. M. Microsporidiosis: current status. Curr. Opin. Infect. Dis. 19, 485–492 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lee, S. C. et al. Microsporidia evolved from ancestral sexual fungi. Curr. Biol. 18, 1675–1679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, S. C., Weiss, L. M. & Heitman, J. Generation of genetic diversity in microsporidia via sexual reproduction and horizontal gene transfer. Commun. Integr. Biol. 2, 414–417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cuomo, C. A. et al. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res. 22, 2478–2488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Selman, M. et al. Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi. Eukaryot. Cell 12, 496–502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tibayrenc, M. & Ayala, F. J. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc. Natl Acad. Sci. USA 109, E3305–E3313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Slutsky, B. et al. “White–opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169, 189–197 (1987). This paper provides the first demonstration that C. albicans cells undergo the white–opaque switch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao, R. et al. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Eukaryot. Cell 4, 1175–1190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xie, J. et al. White-opaque switching in natural MTLa/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex. PLoS Biol. 11, e1001525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, G. et al. Bistable expression of WOR1, a master regulator of white–opaque switching in Candida albicans. Proc. Natl Acad. Sci. USA 103, 12813–12818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Srikantha, T. et al. TOS9 regulates white–opaque switching in Candida albicans. Eukaryot. Cell 5, 1674–1687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zordan, R. E., Galgoczy, D. J. & Johnson, A. D. Epigenetic properties of white–opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl Acad. Sci. USA 103, 12807–12812 (2006). References 168, 169 and 170 identify WOR1 (TOS9 ) as the master transcription factor that regulates the opaque state in C. albicans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zordan, R. E., Miller, M. G., Galgoczy, D. J., Tuch, B. B. & Johnson, A. D. Interlocking transcriptional feedback loops control white–opaque switching in Candida albicans. PLoS Biol. 5, e256 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Lockhart, S. R. et al. In Candida albicans, white–opaque switchers are homozygous for mating type. Genetics 162, 737–745 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, H. et al. Candida albicans Zcf37, a zinc finger protein, is required for stabilization of the white state. FEBS Lett. 585, 797–802 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Hernday, A. D. et al. Structure of the transcriptional network controlling white–opaque switching in Candida albicans. Mol. Microbiol. 90, 22–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lan, C. Y. et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl Acad. Sci. USA 99, 14907–14912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lohse, M. B. & Johnson, A. D. Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS ONE 3, e1473 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Pande, K., Chen, C. & Noble, S. M. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nature Genet. 45, 1088–1091 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Porman, A. M., Hirakawa, M. P., Jones, S. K., Wang, N. & Bennett, R. J. MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation. PLoS Genet. 9, e1003369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xie, J. et al. N-acetylglucosamine induces white-to-opaque switching and mating in Candida tropicalis, providing new insights into adaptation and fungal sexual evolution. Eukaryot. Cell 11, 773–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sherwood, R. K., Scaduto, C. M., Torres, S. E. & Bennett, J. E. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature http://dx.doi.org/10.1038/nature12891 (2014).

  181. Nguyen, V. Q. & Sil, A. Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc. Natl Acad. Sci. USA 105, 4880–4885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cain, C. W., Lohse, M. B., Homann, O. R., Sil, A. & Johnson, A. D. A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 190, 511–521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sai, S., Holland, L. M., McGee, C. F., Lynch, D. B. & Butler, G. Evolution of mating within the Candida parapsilosis species group. Eukaryot. Cell 10, 578–587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Muller, H., Hennequin, C., Gallaud, J., Dujon, B. & Fairhead, C. The asexual yeast Candida glabrata maintains distinct a and α haploid mating types. Eukaryot. Cell 7, 848–858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Byrnes, E. J., 3rd et al. A diverse population of Cryptococcus gattii molecular type VGIII in southern Californian HIV/AIDS patients. PLoS Pathog. 7, e1002205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Heitman for comments and suggestions on the manuscript. They also thank M. Hirakawa, E. Byrnes, J. Heitman, C. O'Gorman and P. Dyer for providing scanning electron micrographs. I.V.E. is supported by a Vessa Notchev Fellowship from Sigma Delta Epsilon-Graduate Women in Science (SDE-GWIS). Work in the laboratory of R.J.B. is supported by a US National Institutes of Health grant AI081704 and by the National Science Foundation grant 1021120 to R.J.B. R.J.B. also holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Modes of sexual reproduction in fungi. (PDF 697 kb)

Supplementary information S2 (figure)

Mating type loci in the three most common human pathogenic fungi. (PDF 268 kb)

Supplementary information S3 (figure)

Phylogenetic tree of fungal species including those commonly associated with human disease (PDF 228 kb)

PowerPoint slides

Glossary

Parasexual reproduction

Form of reproduction in which transfer of genetic material and recombination occurs without meiosis or the development of sexual structures.

Muller's ratchet

The accumulation of deleterious mutations in an asexual population, which becomes so great that it leads to the extinction of the population.

Ascomycetes

The largest division in the fungal kingdom; they are commonly known as sac fungi. Their name stems from their defining sexual feature, ascus (in the form of an ascocarp or cleistothecium), which is where nuclear fusion and meiosis take place, resulting in the formation of ascospores.

Basidiomycetes

One of the two large phyla of Fungi that are typically known as higher fungi. They are most commonly filamentous fungi that reproduce sexually by forming round-shaped cells known as basidia, which bear external basidiospores.

Homeodomain

A 60 amino acid protein domain that folds into a helix–turn–helix compact structure and binds to DNA. Homeodomain folds are commonly found in transcription factors and they are found exclusively in eukaryotes, where they often induce cellular differentiation.

MAPK

(Mitogen-activated protein kinase). A serine/threonine-specific protein kinase that signals cellular responses to a wide range of stimuli, including pheromones, mitogens, osmotic or heat stress.

Aneuploidy

A change in chromosome copy number that does not parallel a change in the entire haploid or diploid genome.

Biofilms

Complex communities of microorganisms that are commonly found attached to a prosthetic surface in the host. Cells adhere to the surface and to each other and promote the formation of extracellular matrix, which protects the biofilm community from external stress (including antifungal drugs).

Gastrointestinally induced transition

(GUT). A phenotypic transition that enables C. albicans cells to hypercolonize the gastrointestinal tracts of mice.

Candida clade

A group of related Candida species; members of this group share an altered genetic code in which the CUG codon is translated as leucine instead of serine as in the universal genetic code. This group includes most pathogenic Candida species, except for Candida glabrata, which is more closely related to Saccharomyces cerevisiae.

Idiomorphs

Distinct fungal mating type genes, which, in contrast to alleles, generally lack homology and do not seem to share an obvious ancestry.

HMG-box

(High mobility group-box). A protein domain that is involved in DNA binding.

Dimorphic fungi

Fungi that can exist as single cells (yeast) or in a hyphal or filamentous form. Morphological transitions, such as the yeast–hyphal transition, are driven by a range of environmental conditions (for example, temperature or pH).

Zygomycetes

A phylum of fungi whose name derives from zygospores, which are resistant spherical spores that are formed during mating. Species include Mucor circinelloides and Rhizopus stolonifer, which is the black bread mould.

Commensalism

The close relationship between two organisms, in which one organism (the commensal organism) benefits without affecting its host. The term is derived from the Latin 'commensalis', which means 'sharing a table'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ene, I., Bennett, R. The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol 12, 239–251 (2014). https://doi.org/10.1038/nrmicro3236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing