Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies

Key Points

  • Bacterial multicellularity takes several phenotypically diverse forms and has independently evolved in different species.

  • Simple bacterial multicellularity can rapidly evolve as a result of mutations that prevent cells from separating after division or that cause independent cells to co-aggregate.

  • Hallmark features of bacterial multicellularity include morphological differentiation, programmed cell death and a well-defined and reproducible multicellular shape (known as patterning).

  • The benefits of bacterial multicellularity include predation- and stress-resistance and improved resource acquisition and dispersal.

  • Bacterial multicellular structures that arise via aggregation — for example, in Myxobacteria spp. — are susceptible to the emergence of cheater cells that exploit other cooperative cells.

  • Experimental evolution offers exciting possibilities for understanding the mechanisms and dynamics of the de novo evolution of bacterial multicellularity under defined laboratory conditions.

Abstract

Although bacteria frequently live as unicellular organisms, many spend at least part of their lives in complex communities, and some have adopted truly multicellular lifestyles and have abandoned unicellular growth. These transitions to multicellularity have occurred independently several times for various ecological reasons, resulting in a broad range of phenotypes. In this Review, we discuss the strategies that are used by bacteria to form and grow in multicellular structures that have hallmark features of multicellularity, including morphological differentiation, programmed cell death and patterning. In addition, we examine the evolutionary and ecological factors that lead to the wide range of coordinated multicellular behaviours that are observed in bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial manifestations of multicellularity.
Figure 2: Evolution of multicellular clusters.
Figure 3: Different strategies that lead to the development of bacterial multicellularity.

Similar content being viewed by others

References

  1. Shapiro, J. A. Bacteria as multicellular organisms. Sci. Am. 256, 82–89 (1988). This work challenges the concept of bacteria as strictly unicellular organisms.

    Article  Google Scholar 

  2. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Bonner, J. T. The origins of multicellularity. Int. Biol. 1, 27–36 (1998).

    Google Scholar 

  4. Rokas, A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42, 235–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: a minor major transition? Annu. Rev. Ecol. Evol. Systemat. 38, 621–654 (2007).

    Article  Google Scholar 

  6. Monds, R. D. & O'Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Flemming, H. C., Neu, T. R. & Wozniak, D. J. The EPS matrix: the “house of biofilm cells”. J. Bacteriol. 189, 7945–7947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flemming, H. C. & Wingender, J. The biofilm matrix. Nature Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  Google Scholar 

  9. Gebbink, M. F., Claessen, D., Bouma, B., Dijkhuizen, L. & Wosten, H. A. Amyloids — a functional coat for microorganisms. Nature Rev. Microbiol. 3, 333–341 (2005).

    Article  CAS  Google Scholar 

  10. Li, Y. et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 5443–5448 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi, K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J. Bacteriol. 189, 4920–4931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perez-Nunez, D. et al. A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci. Mol. Microbiol. 79, 759–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Flores, E. et al. Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189, 3884–3890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merino-Puerto, V. et al. FraC/FraD-dependent intercellular molecular exchange in the filaments of a heterocyst-forming cyanobacterium, Anabaena sp. Mol. Microbiol. 82, 87–98 (2011). This study clarifies the mechanistic basis of intercellular communication across cyanobacterial septa.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson, D. E. & Young, K. D. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182, 1714–1721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Potluri, L. P., de Pedro, M. A. & Young, K. D. Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Mol. Microbiol. 84, 203–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012). This study shows the ease with which multicellular clusters can evolve de novo in S. cerevisiae under laboratory conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jousset, A. Ecological and evolutive implications of bacterial defences against predators. Environ. Microbiol. 14, 1830–1843 (2012).

    Article  PubMed  Google Scholar 

  19. Boraas, M. E., Seale, D. B. & Boxhorn, J. E. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol. Ecol. 12, 153–164 (1998).

    Article  Google Scholar 

  20. Corno, G. & Jurgens, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72, 78–86 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blom, J. F., Zimmermann, Y. S., Ammann, T. & Pernthaler, J. Scent of danger: floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture. Appl. Environ. Microbiol. 76, 6156–6163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chauhan, A. et al. Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings. J. Bacteriol. 188, 1856–1865 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. Nature Rev. Microbiol. 6, 162–168 (2008).

    Article  CAS  Google Scholar 

  24. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 8, e1001122 (2011).

    Article  CAS  Google Scholar 

  25. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2, e00367 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rosenberg, E., Keller, K. H. & Dworkin, M. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129, 770–777 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Velicer, G. J. & Vos, M. Sociobiology of the myxobacteria. Annu. Rev. Microbiol. 63, 599–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nature Rev. Microbiol. 11, 157–168 (2013).

    Article  CAS  Google Scholar 

  29. Webb, J. S., Givskov, M. & Kjelleberg, S. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 6, 578–585 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lemon, K. P., Earl, A. M., Vlamakis, H. C., Aguilar, C. & Kolter, R. Biofilm development with an emphasis on Bacillus subtilis. Curr. Top. Microbiol. Immunol. 322, 1–16 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001). This study is the first to recognize the complex multicellular behaviour of B. subtilis biofilms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003). This study shows that a subpopulation of B. subtilis communities can delay sporulation by PCD-mediated cannibalism of their siblings.

    Article  CAS  PubMed  Google Scholar 

  33. Veening, J. W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Wilking, J. N. et al. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 110, 848–852 (2013). This paper reports on the importance of microchannels for the distribution of nutrients and the removal of waste products from biofilms.

    Article  PubMed  Google Scholar 

  35. Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffins, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Systemat. 38, 53–77 (2007).

    Article  Google Scholar 

  37. Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. Biol. Sci. 279, 4765–4771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pfeiffer, T. & Bonhoeffer, S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc. Natl Acad. Sci. USA 100, 1095–1098 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossetti, V. & Bagheri, H. C. Advantages of the division of labour for the long-term population dynamics of cyanobacteria at different latitudes. Proc. Biol. Sci. 279, 3457–3466 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1, 15–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Berleman, J. E., Chumley, T., Cheung, P. & Kirby, J. R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006). This study shows that rippling is a feeding behaviour that occurs when M. xanthus cells make direct contact with prey or large macromolecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jelsbak, L. & Søgaard-Andersen, L. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 99, 2032–2037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Whitworth, D. E. (ed.) Myxobacteria: multicellularity and differentiation (ASM, 2008).

    Book  Google Scholar 

  45. O'Connor, K. A. & Zusman, D. R. Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J. Bacteriol. 173, 3318–3333 (1991). This study provides the first evidence that M. xanthus peripheral rods are a cell type that is distinct from vegetative cells and spores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nariya, H. & Inouye, M. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Wireman, J. W. & Dworkin, M. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129, 798–802 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. O'Connor, K. A. & Zusman, D. R. Behaviour of peripheral rods and their role in the life cycle of Myxococcus xanthus. J. Bacteriol. 173, 3342–3355 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fiegna, F. & Velicer, G. J. Exploitative and hierarchical antagonism in a cooperative bacterium. PLoS Biol. 3, e370 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598–601 (2000). This study shows that anti-social behaviours are common in natural populations of M. xanthus.

    Article  CAS  PubMed  Google Scholar 

  51. Kraemer, S. A. & Velicer, G. J. Endemic social diversity within natural kin groups of a cooperative bacterium. Proc. Natl Acad. Sci. USA 108, 10823–10830 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Velicer, G. J., Kroos, L. & Lenski, R. E. Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl Acad. Sci. USA 95, 12376–12380 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vos, M. & Velicer, G. J. Social conflict in centimeter and global-scale populations of the bacterium Myxococcus xanthus. Curr. Biol. 19, 1763–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pathak, D. T., Wei, X., Dei, A. & Wall, D. Molecular recognition by a polymorphic cell surface receptor governs cooperative behaviors in bacteria. PLoS Genet. 9, e1003891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Be'er, A. et al. Lethal protein produced in response to competition between sibling bacterial colonies. Proc. Natl Acad. Sci. USA 107, 6258–6263 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gibbs, K. A. & Greenberg, E. P. Territoriality in Proteus: advertisement and aggression. Chem. Rev. 111, 188–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Schirrmeister, B. E., Antonelli, A. & Bagheri, H. C. The origin of multicellularity in cyanobacteria. BMC Evol. Biol. 11, 45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tomitani, A., Knoll, A. H., Cavanaugh, C. M. & Ohno, T. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc. Natl Acad. Sci. USA 103, 5442–5447 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nature Rev. Microbiol. 8, 39–50 (2010).

    Article  CAS  Google Scholar 

  60. Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, a000315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoon, H. S. & Golden, J. W. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 183, 2605–2613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Golden, J. W. & Yoon, H. S. Heterocyst development in Anabaena. Curr. Opin. Microbiol. 6, 557–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Mullineaux, C. W. et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 27, 1299–1308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rossetti, V., Schirrmeister, B. E., Bernasconi, M. V. & Bagheri, H. C. The evolutionary path to terminal differentiation and division of labor in cyanobacteria. J. Theor. Biol. 262, 23–34 (2010).

    Article  PubMed  Google Scholar 

  65. Rodrigues, J. F. M., Rankin, D. J., Rossetti, V., Wagner, A. & Bagheri, H. C. Differences in cell division rates drive the evolution of terminal differentiation in microbes. PLoS Comput. Biol. 8, e1002468 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, D. Y. & Rhee, G. Y. Circadian rhythm in growth and death of Anabaena flos-aquae (cyanobacteria). J. Phycol. 35, 694–699 (2002).

    Article  Google Scholar 

  67. Ning, S. B., Guo, H. L., Wang, L. & Song, Y. C. Salt stress induces programmed cell death in prokaryotic organism Anabaena. J. Appl. Microbiol. 93, 15–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Berman-Frank, I. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).

    Article  Google Scholar 

  69. Flärdh, K., Richards, D. M., Hempel, A. M., Howard, M. & Buttner, M. J. Regulation of apical growth and hyphal branching in Streptomyces. Curr. Opin. Microbiol. 15, 737–743 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Jakimowicz, D. & van Wezel, G. P. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol. Microbiol. 85, 393–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Hopwood, D. A. Streptomyces in nature and medicine: the antibiotic makers (Oxford Univ. Press, 2007).

    Google Scholar 

  72. van Wezel, G. P. & McDowall, K. J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nature Prod. Rep. 28, 1311–1333 (2011).

    Article  CAS  Google Scholar 

  73. Claessen, D., de Jong, W., Dijkhuizen, L. & Wösten, H. A. Regulation of Streptomyces development: reach for the sky! Trends Microbiol. 14, 313–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Manteca, A., Fernandez, M. & Sanchez, J. A death round affecting a young compartmentalized mycelium precedes aerial mycelium dismantling in confluent surface cultures of Streptomyces antibioticus. Microbiology 151, 3689–3697 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Chater, K. F. & Losick, R. in Bacteria as multicellular organisms (eds Shapiro, J. A. & Dworkin, M.) 149–182 (Oxford Univ. Press, 1997).

    Google Scholar 

  76. Colson, S. et al. Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J. Mol. Microbiol. Biotechnol. 12, 60–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Nazari, B. et al. Chitin-induced gene expression involved in secondary metabolic pathways in Streptomyces coelicolor A3(2) grown in soil. Appl. Environ. Microbiol. 79, 707–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Rigali, S. et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61, 1237–1251 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Rigali, S. et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670–675 (2008). This study provides the first evidence of a direct correlation between PCD and the onset of aerial growth and antibiotic production in S. coelicolor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Rev. Microbiol. 7, 642–653 (2009).

    Article  CAS  Google Scholar 

  81. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Schwedock, J., Mccormick, J. R., Angert, E. R., Nodwell, J. R. & Losick, R. Assembly of the cell division protein FtsZ into ladder like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25, 847–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Flärdh, K., Leibovitz, E., Buttner, M. J. & Chater, K. F. Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Mol. Microbiol. 38, 737–749 (2000).

    Article  PubMed  Google Scholar 

  84. Willemse, J., Mommaas, A. M. & van Wezel, G. P. Constitutive expression of ftsZ overrides the whi developmental genes to initiate sporulation of Streptomyces coelicolor. Antonie Van Leeuwenhoek 101, 619–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Willemse, J., Borst, J. W., de Waal, E., Bisseling, T. & van Wezel, G. P. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev. 25, 89–99 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu, Q. et al. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. J. Biol. Chem. 284, 25268–25279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Girard, G. et al. A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol. http://dx.doi.org/10.1098/rsob.130073 (2013).

  88. Akerlund, T., Nordstrom, K. & Bernander, R. Branched Escherichia coli cells. Mol. Microbiol. 10, 849–858 (1993). This work shows that single mutations can introduce branching in populations of E. coli cells.

    Article  CAS  PubMed  Google Scholar 

  89. Gullbrand, B., Akerlund, T. & Nordstrom, K. On the origin of branches in Escherichia coli. J. Bacteriol. 181, 6607–6614 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nilsen, T., Ghosh, A. S., Goldberg, M. B. & Young, K. D. Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Mol. Microbiol. 52, 1045–1054 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kawamoto, S., Watanabe, H., Hesketh, A., Ensign, J. C. & Ochi, K. Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. Microbiology 143, 1077–1086 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. van Wezel, G. P. et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl. Environ. Microbiol. 72, 5283–5288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fisher, R. M., Cornwallis, C. K. & West, S. A. Group formation, relatedness, and the evolution of multicellularity. Curr. Biol. 23, 1120–1125 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Ratcliff, W. C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nature Commun. 4, 2742 (2013).

    Article  CAS  Google Scholar 

  95. Giddings, T. H. & Staehelin, L. A. Observation of microplasmodesmata in both heterocyst-forming and non-heterocyst forming filamentous cyanobacteria by freeze-fracture electron microscopy. Arch. Microbiol. 129, 295–298 (1981).

    Article  Google Scholar 

  96. Wilk, L. et al. Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120. Cell. Microbiol. 13, 1744–1754 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Merino-Puerto, V., Mariscal, V., Mullineaux, C. W., Herrero, A. & Flores, E. Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp. Mol. Microbiol. 75, 1159–1170 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Kataoka, M., Seki, T. & Yoshida, T. Regulation and function of the Streptomyces plasmid pSN22 genes involved in pock formation and inviability. J. Bacteriol. 173, 7975–7981 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hopwood, D. A. & Kieser, T. in Bacterial Conjugation (ed. Clewell, D. B.) 293–311 (Plenum, 1993).

    Book  Google Scholar 

  100. McCormick, J. R., Su, E. P., Driks, A. & Losick, R. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14, 243–254 (1994). This paper shows that ftsZ -null mutants of S. coelicolor are viable; this is the first example of a free-living bacterium that can grow without cell division.

    Article  CAS  PubMed  Google Scholar 

  101. Mistry, B. V., Del Sol, R., Wright, C., Findlay, K. & Dyson, P. FtsW is a dispensable cell division protein required for Z-ring stabilization during sporulation septation in Streptomyces coelicolor. J. Bacteriol. 190, 5555–5566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schlimpert, S. et al. General protein diffusion barriers create compartments within bacterial cells. Cell 151, 1270–1282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sonobe, S. et al. Proliferation of the hyperthermophilic archaeon Pyrobaculum islandicum by cell fission. Extremophiles 14, 403–407 (2010).

    Article  PubMed  Google Scholar 

  104. Letek, M. et al. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J. Bacteriol. 190, 3283–3292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W. & Husson, R. N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154, 725–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Nguyen, L. et al. Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J. Bacteriol. 189, 7896–7910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Flärdh, K. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol. Microbiol. 49, 1523–1536 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Edwards, D. H. & Errington, J. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12, 3419–3430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scherr, N. & Nguyen, L. Mycobacterium versus Streptomyces — we are different, we are the same. Curr. Opin. Microbiol. 12, 699–707 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ghosh, J. et al. Sporulation in mycobacteria. Proc. Natl Acad. Sci. USA 106, 10781–10786 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Traag, B. A. et al. Do mycobacteria produce endospores? Proc. Natl Acad. Sci. USA 107, 878–881 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E. Flores, J. E. Frías, J. Kirby and S. Müller for kindly providing images. The work was supported by Vidi and Vici grants from the Dutch Applied Research Council (to D.C. and G.P.vW., respectively) and a UK Biotechnology and Biological Sciences Research Council (BBSRC) grant (D.E.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lotte Søgaard-Andersen or Gilles P. van Wezel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Swarming

The coordinated movement of a group of bacterial cells across a surface.

Irreversible differentiation

A process by which cells become irreversibly specialized in form and function.

Syncytial filaments

Filaments that have a multinucleated cytoplasm that is not separated into individual cells.

Germ–soma division

The distinction in animals and plants between cells that are reproductively competent (known as germ cells) and those that contribute only to growth and structural maintenance (soma).

Propagules

Materials that enable dispersal and promote continued growth, such as a spore or cluster of cells.

Sessile

A term used to describe cells that grow while they are attached to a surface substrate.

Planktonic

A term used to describe unattached cells that grow in the bulk liquid of a medium.

Pellicles

Biofilms that form at the water–air interface.

Sporulation

The process of generating spores that are resistant to environmental stresses, such as dessication and starvation.

Kin selection

The evolutionary theory that explains why altruistic behaviours are directed towards individuals that are highly genetically related.

Desmosomes

Eukaryotic cell structures that are specialized for cell–cell adhesion and molecular exchange.

S-layer

A cell envelope layer that is composed of proteins, which encloses the cell surface of many bacteria and archaea, and occasionally divides cells.

Stringent response

A bacterial stress response that is induced during unfavourable growth conditions (such as lack of amino acids), which creates a negative-feedback loop that shuts down macromolecule biosynthesis and other metabolic activity.

(p)ppGpp

(Guanosine pentaphosphate or tetraphosphate). An alarmone molecule that signals the stringent response.

Allorecognition

The process by which organisms are able to distinguish self from non-self.

Bacteriocin

A narrow- or broad-spectrum antimicrobial peptide, which is ribosomally synthesized by bacteria and is able to kill other bacteria by different mechanisms.

Paralogue

A term used to describe evolutionarily related genes that have duplicated and reside in different locations within the same genome.

Sporangia

Specialized structures in which spores are formed and contained.

Min system

A system that ensures the correct localization of the septum during cell division by directing polymerization of the cell division scaffold protein FtsZ away from the cell poles and towards midcell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claessen, D., Rozen, D., Kuipers, O. et al. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12, 115–124 (2014). https://doi.org/10.1038/nrmicro3178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing