Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Structural and mechanistic insights into prokaryotic energy-coupling factor transporters

Abstract

Energy-coupling factor (ECF) transporters belong to the ATP-binding cassette (ABC)-transporter family and mediate the uptake of essential micronutrients in many prokaryotic species. Two crystal structures of bacterial ECF transporters have recently been obtained and suggest that transport involves an unprecedented re-orientation of a membrane protein in the lipid bilayer during catalysis. In this Progress article, I present the new structural insights, discuss a testable model for the transport mechanism and consider the more general implications of these findings for our understanding of membrane transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition and architecture of ECF transporters.
Figure 2: Structure of ECF transporters.
Figure 3: Models for alternating-access mechanisms of transport.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Henderson, G. B. & Zevely, E. M. Binding and transport of thiamine by Lactobacillus casei. J. Bacteriol. 133, 1190–1196 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Henderson, G. B., Zevely, E. M. & Huennekens, F. M. Coupling of energy to folate transport in Lactobacillus casei. J. Bacteriol. 139, 552–559 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson, G. B., Zevely, E. M. & Huennekens, F. M. Purification and properties of a membrane-associated, folate-binding protein from Lactobacillus casei. J. Biol. Chem. 252, 3760–3765 (1977).

    CAS  PubMed  Google Scholar 

  4. Henderson, G. B., Zevely, E. M., Kadner, R. J. & Huennekens, F. M. The folate and thiamine transport proteins of Lactobacillus casei. J. Supramol. Struct. 6, 239–247 (1977).

    Article  CAS  Google Scholar 

  5. Henderson, G. B., Zevely, E. M. & Huennekens, F. M. Mechanism of folate transport in Lactobacillus casei: evidence for a component shared with the thiamine and biotin transport systems. J. Bacteriol. 137, 1308–1314 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodionov, D. A. et al. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 191, 42–51 (2009).

    Article  CAS  Google Scholar 

  7. Rodionov, D. A., Hebbeln, P., Gelfand, M. S. & Eitinger, T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188, 317–327 (2006).

    Article  CAS  Google Scholar 

  8. Hebbeln, P., Rodionov, D. A., Alfandega, A. & Eitinger, T. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc. Natl Acad. Sci. USA 104, 2909–2914 (2007).

    Article  Google Scholar 

  9. Duurkens, R. H., Tol, M. B., Geertsma, E. R., Permentier, H. P. & Slotboom, D. J. Flavin binding to the high affinity riboflavin transporter RibU. J. Biol. Chem. 282, 10380–10386 (2007).

    Article  CAS  Google Scholar 

  10. Burgess, C. M. et al. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J. Bacteriol. 188, 2752–2760 (2006).

    Article  CAS  Google Scholar 

  11. Eudes, A. et al. Identification of genes encoding the folate- and thiamine-binding membrane proteins in Firmicutes. J. Bacteriol. 190, 7591–7594 (2008).

    Article  CAS  Google Scholar 

  12. Yakhnin, H., Zhang, H., Yakhnin, A. V. & Babitzke, P. The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding. J. Bacteriol. 186, 278–286 (2004).

    Article  CAS  Google Scholar 

  13. Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J. Biol. Chem. 277, 48949–48959 (2002).

    Article  CAS  Google Scholar 

  14. Vogl, C. et al. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J. Bacteriol. 189, 7367–7375 (2007).

    Article  CAS  Google Scholar 

  15. Schauer, K., Stolz, J., Scherer, S. & Fuchs, T. M. Both thiamine uptake and biosynthesis of thiamine precursors are required for intracellular replication of Listeria monocytogenes. J. Bacteriol. 191, 2218–2227 (2009).

    Article  CAS  Google Scholar 

  16. Glass, J. I. et al. Essential genes of a minimal bacterium. Proc. Natl Acad. Sci. USA 103, 425–430 (2006).

    Article  CAS  Google Scholar 

  17. Ji, Y. et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266–2269 (2001).

    Article  CAS  Google Scholar 

  18. Forsyth, R. A. et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400 (2002).

    Article  CAS  Google Scholar 

  19. Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A. & Pucci, M. J. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152–3162 (2002).

    Article  CAS  Google Scholar 

  20. Song, J.-H. & Ko, K. S. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis. Methods Mol. Biol. 416, 401–408 (2008).

    Article  CAS  Google Scholar 

  21. Xu, K. et al. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497, 268–271 (2013).

    Article  CAS  Google Scholar 

  22. Wang, T. et al. Structure of a bacterial energy-coupling factor transporter. Nature 497, 272–276 (2013).

    Article  CAS  Google Scholar 

  23. Zhang, P., Wang, J. & Shi, Y. Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468, 717–720 (2010).

    Article  CAS  Google Scholar 

  24. Berntsson, R. P.-A. et al. Structural divergence of paralogous S components from ECF-type ABC transporters. Proc. Natl Acad. Sci. USA 109, 13990–13995 (2012).

    Article  CAS  Google Scholar 

  25. Erkens, G. B. et al. The structural basis of modularity in ECF-type ABC transporters. Nature Struct. Mol. Biol. 18, 755–760 (2011).

    Article  CAS  Google Scholar 

  26. Erkens, G. B. & Slotboom, D. J. Biochemical characterization of ThiT from Lactococcus lactis: a thiamin transporter with picomolar substrate binding affinity. Biochemistry 49, 3203–3212 (2010).

    Article  CAS  Google Scholar 

  27. Eitinger, T., Rodionov, D. A., Grote, M. & Schneider, E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol. Rev. 35, 3–67 (2011).

    Article  CAS  Google Scholar 

  28. Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nature Rev. Mol. Cell Biol. 10, 218–227 (2009).

    Article  CAS  Google Scholar 

  29. ter Beek, J., Duurkens, R. H., Erkens, G. B. & Slotboom, D. J. Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters. J. Biol. Chem. 286, 5471–5475 (2011).

    Article  CAS  Google Scholar 

  30. Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).

    Article  CAS  Google Scholar 

  31. Finkenwirth, F., Kirsch, F. & Eitinger, T. Solitary BioY proteins mediate biotin transport into recombinant Escherichia coli. J. Bacteriol. 195, 4105–4111 (2013).

    Article  CAS  Google Scholar 

  32. Fisher, D. J., Fernández, R. E., Adams, N. E. & Maurelli, A. T. Uptake of biotin by Chlamydia spp. through the use of a bacterial transporter (BioY) and a host-cell transporter (SMVT). PLoS ONE 7, e46052 (2012).

    Article  CAS  Google Scholar 

  33. Karpowich, N. K. & Wang, D.-N. Assembly and mechanism of a group II ECF transporter. Proc. Natl Acad. Sci. USA 110, 2534–2539 (2013).

    Article  CAS  Google Scholar 

  34. Neubauer, O., Reiffler, C., Behrendt, L. & Eitinger, T. Interactions among the A and T units of an ECF-type biotin transporter analyzed by site-specific crosslinking. PLoS ONE 6, e29087 (2011).

    Article  CAS  Google Scholar 

  35. Finkenwirth, F. et al. Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria. Biochem. J. 431, 373–380 (2010).

    Article  CAS  Google Scholar 

  36. Kirsch, F. et al. Essential amino acid residues of BioY reveal that dimers are the functional S unit of the Rhodobacter capsulatus biotin transporter. J. Bacteriol. 194, 4505–4512 (2012).

    Article  CAS  Google Scholar 

  37. von Heijne, G. Membrane-protein topology. Nature Rev. Mol. Cell Biol. 7, 909–918 (2006).

    Article  CAS  Google Scholar 

  38. von Heijne, G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458 (1989).

    Article  CAS  Google Scholar 

  39. Majsnerowska, M. et al. Substrate-induced conformational changes in the S component ThiT from an energy coupling factor transporter. Structure 21, 861–867 (2013).

    Article  CAS  Google Scholar 

  40. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  Google Scholar 

  41. Tanford, C. Simple model for the chemical potential change of a transported ion in active transport. Proc. Natl Acad. Sci. USA 79, 2882–2884 (1982).

    Article  CAS  Google Scholar 

  42. Boudker, O. & Verdon, G. Structural perspectives on secondary active transporters. Trends Pharmacol. Sci. 31, 418–426 (2010).

    Article  CAS  Google Scholar 

  43. Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiol. (Bethesda) 24, 377–386 (2009).

    CAS  Google Scholar 

  44. Mitchell, P. Osmochemistry of solute translocation. Res. Microbiol. 141, 286–289 (1990).

    Article  CAS  Google Scholar 

  45. Widdas, W. F. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. 118, 23–39 (1952).

    Article  CAS  Google Scholar 

  46. Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).

    Article  CAS  Google Scholar 

  47. Bowie, J. U. Structural biology. Membrane protein twists and turns. Science 339, 398–399 (2013).

    Article  CAS  Google Scholar 

  48. Choi-Rhee, E. & Cronan, J. E. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem. Biol. 12, 461–468 (2005).

    Article  CAS  Google Scholar 

  49. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  50. Slotboom, D. J., Duurkens, R. H., Olieman, K. & Erkens, G. B. Static light scattering to characterize membrane proteins in detergent solution. Methods 46, 73–82 (2008).

    Article  CAS  Google Scholar 

  51. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002).

    Article  CAS  Google Scholar 

  52. Neubauer, O. et al. Two essential arginine residues in the T components of energy-coupling factor transporters. J. Bacteriol. 191, 6482–6488 (2009).

    Article  CAS  Google Scholar 

  53. Hollenstein, K., Dawson, R. J. P. & Locher, K. P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412–418 (2007).

    Article  CAS  Google Scholar 

  54. Hänelt, I., Wunnicke, D., Bordignon, E., Steinhoff, H.-J. & Slotboom, D. J. Conformational heterogeneity of the aspartate transporter GltPh . Nature Struct. Mol. Biol. 20, 210–214 (2013).

    Article  Google Scholar 

  55. Erkens, G. B., Hänelt, I., Goudsmits, J. M. H., Slotboom, D. J. & van Oijen, A. M. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013).

    Article  CAS  Google Scholar 

  56. Robertson, J. L., Kolmakova-Partensky, L. & Miller, C. Design, function and structure of a monomeric ClC transporter. Nature 468, 844–847 (2010).

    Article  CAS  Google Scholar 

  57. Chen, S., Oldham, M. L., Davidson, A. L. & Chen, J. Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499, 364–368 (2013).

    Article  CAS  Google Scholar 

  58. Oldham, M. L. & Chen, J. Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332, 1202–1205 (2011).

    Article  CAS  Google Scholar 

  59. Oldham, M. L. & Chen, J. Snapshots of the maltose transporter during ATP hydrolysis. Proc. Natl Acad. Sci. USA 108, 15152–15156 (2011).

    Article  CAS  Google Scholar 

  60. Khare, D., Oldham, M. L., Orelle, C., Davidson, A. L. & Chen, J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536 (2009).

    Article  CAS  Google Scholar 

  61. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).

    Article  CAS  Google Scholar 

  62. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    Article  CAS  Google Scholar 

  63. Hvorup, R. N. et al. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD–BtuF. Science 317, 1387–1390 (2007).

    Article  CAS  Google Scholar 

  64. Korkhov, V. M., Mireku, S. A. & Locher, K. P. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD–F. Nature 490, 367–372 (2012).

    Article  CAS  Google Scholar 

  65. Hinz, A. & Tampé, R. ABC transporters and immunity: mechanism of self-defense. Biochemistry 51, 4981–4989 (2012).

    Article  CAS  Google Scholar 

  66. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  Google Scholar 

  67. Hohl, M., Briand, C., Grütter, M. G. & Seeger, M. A. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nature Struct. Mol. Biol. 19, 395–402 (2012).

    Article  CAS  Google Scholar 

  68. Berntsson, R. P.-A., Smits, S. H. J., Schmitt, L., Slotboom, D. J. & Poolman, B. A structural classification of substrate-binding proteins. FEBS Lett. 584, 2606–2617 (2010).

    Article  CAS  Google Scholar 

  69. Zhang, Y., Rodionov, D. A., Gelfand, M. S. & Gladyshev, V. N. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 10, 78 (2009).

    Article  Google Scholar 

  70. Siche, S., Neubauer, O., Hebbeln, P. & Eitinger, T. A bipartite S unit of an ECF-type cobalt transporter. Res. Microbiol. 161, 824–829 (2010).

    Article  CAS  Google Scholar 

  71. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    Article  CAS  Google Scholar 

  72. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge support from the Netherlands Organisation for Scientific Research (NWO) and the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk J. Slotboom.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slotboom, D. Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12, 79–87 (2014). https://doi.org/10.1038/nrmicro3175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3175

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology