Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New viruses for cancer therapy: meeting clinical needs

Key Points

  • Oncolytic virotherapy re-engineers and repurposes replicating viruses for the treatment of cancer. Therapeutic viruses specifically infect and spread within cancer tissue, causing cell death.

  • In recent years, an increasing number of viruses have been developed as cancer therapeutics. There are nine virus families that are currently used in virotherapy clinical trials.

  • Different viruses have evolved tissue specificities that can be exploited to preferentially destroy certain tumour types.

  • Engineering strategies to improve the therapeutic potential of oncolytic viruses include protection from neutralizing immunity, restriction of entry or replication to tumour cells and expression of transgenes to synergize with traditional therapies and the anti-tumour activity of the patient's immune system.

  • Ion transport transgenes, such as the sodium–iodide symporter (NIS) can be used to image virus replication non-invasively at high resolutions using clinically available imaging technologies, such as single-photon emission computed tomography–computed tomography (SPECT–CT) and positron emission tomography (PET).

  • The individualization of therapy and our increasing knowledge of tumour pathophysiology will guide the application of engineered viruses against tumour types that have defined sensitivities to virotherapy.

Abstract

Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vector-shielding strategies.
Figure 2: Principles of tumour targeting — illustrated for four virus families.
Figure 3: Post-entry targeting.
Figure 4: Arming strategies that induce bystander cell killing.

Similar content being viewed by others

References

  1. Dock, G. The influence of complicating diseases upon leukemia. Am. J. Med. Sci. 127, 563–592 (1904).

    Article  Google Scholar 

  2. Cattaneo, R., Miest, T., Shashkova, E. V. & Barry, M. A. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nature Rev. Microbiol. 6, 529–540 (2008). This Review provides a thorough introduction to virus engineering strategies.

    Article  CAS  Google Scholar 

  3. Russell, S. J., Peng, K.-W. & Bell, J. C. Oncolytic virotherapy. Nature Biotech. 30, 658–670 (2012). This Review gives a comprehensive overview of current virotherapy clinical trials.

    Article  CAS  Google Scholar 

  4. Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651–659 (2007). This paper provides a narrative introduction to the history of oncolytic virotherapy.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, T.-C., Galanis, E. & Kirn, D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nature Rev. Clin. Oncol. 4, 101–117 (2007).

    Article  CAS  Google Scholar 

  6. Eager, R. M. & Nemunaitis, J. Clinical development directions in oncolytic viral therapy. Cancer Gene Ther. 18, 305–317 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Xia, Z. J., et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng 23, 1666–1670 (2004).

    PubMed  Google Scholar 

  8. Rudin, C. M. et al. Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin. Cancer Res. 17, 888–895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Senzer, N. N. et al. Phase II clinical trial of a granulocyte–macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 27, 5763–5771 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Kaufman, H. L. et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 17, 718–730 (2010).

    Article  PubMed  Google Scholar 

  11. Freeman, A. I. et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther. 13, 221–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Galanis, E. et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 70, 875–882 (2010). This paper is an example of monitoring virus replication in patients using a soluble protein that is expressed by the virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nüesch, J. P. F., Lacroix, J., Marchini, A. & Rommelaere, J. Molecular pathways: rodent parvoviruses — mechanisms of oncolysis and prospects for clinical cancer treatment. Clin. Cancer Res. 18, 3516–3523 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Vidal, L. et al. A Phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin. Cancer Res. 14, 7127–7137 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Forsyth, P. et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol. Ther. 16, 627–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Park, B.-H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9, 533–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hwang, T.-H. et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol. Ther. 19, 1913–1922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heo, J. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Med. 19, 329–336 (2013). This paper describes the planning of a Phase III randomized trial with a placebo control arm on the basis of the results of a Phase II clinical trial.

    Article  CAS  PubMed  Google Scholar 

  19. Perez, O. D. et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol. Ther. 20, 1689–1698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willmon, C. L. et al. Expression of IFN-β enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma. Cancer Res. 69, 7713–7720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jenks, N. et al. Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-β in rodents and nonhuman primates. Hum. Gene Ther. 21, 451–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi, T. et al. A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1, 147–157 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy, P. S. et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J. Natl Cancer Inst. 99, 1623–1633 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burke, J. M. et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J. Urol. 188, 2391–2397 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nature Med. 5, 881–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ikeda, K. et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J. Virol. 74, 4765–4775 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wakimoto, H. et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 5, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kambara, H., Saeki, Y. & Chiocca, E. A. Cyclophosphamide allows for in vivo dose reduction of a potent oncolytic virus. Cancer Res. 65, 11255–11258 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Peng, K.-W. et al. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther. 20, 255–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gallione, C. J. & Rose, J. K. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J. Virol. 46, 162–169 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaufmann, J. K. & Nettelbeck, D. M. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol. Med. 18, 365–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Bradley, R. R. et al. Adenovirus serotype 5-specific neutralizing antibodies target multiple hexon hypervariable regions. J. Virol. 86, 1267–1272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roberts, D. M. et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 441, 239–243 (2006). This paper is a 'tour-de-force' that shows how neutralizing epitopes can be substituted by other sequences in an icosahedral capsid.

    Article  CAS  PubMed  Google Scholar 

  34. Särkioja, M. et al. Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies. Gene Ther. 15, 921–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kuhlmann, K. F. D. et al. Fiber-chimeric adenoviruses expressing fibers from serotype 16 and 50 improve gene transfer to human pancreatic adenocarcinoma. Cancer Gene Ther. 16, 585–597 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Miest, T. S. et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol. Ther. 19, 1813–1820 (2011). This study is an example of glycoprotein exchange between different virus species that avoids neutralization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatsuo, H., Ono, N. & Yanagi, Y. Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J. Virol. 75, 5842–5850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tatsuo, H. & Yanagi, Y. The morbillivirus receptor SLAM (CD150). Microbiol. Immunol. 46, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hudacek, A. W., Navaratnarajah, C. K. & Cattaneo, R. Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther. 20, 109–116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kreppel, F. & Kochanek, S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol. Ther. 16, 16–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Fisher, K. D. & Seymour, L. W. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug Deliv. Rev. 62, 240–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, P.-H. et al. Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration. Biomaterials 32, 9328–9342 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Doronin, K., Shashkova, E. V., May, S. M., Hofherr, S. E. & Barry, M. A. Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum. Gene Ther. 20, 975–988 (2009). This report shows that chemical modification of the viral surface can have a positive effect on targeting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khare, R., Chen, C. Y., Weaver, E. A. & Barry, M. A. Advances and future challenges in adenoviral vector pharmacology and targeting. Curr. Gene Ther. 11, 241–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi, J.-W., Lee, J.-S., Kim, S. W. & Yun, C.-O. Evolution of oncolytic adenovirus for cancer treatment. Adv. Drug Deliv. Rev. 64, 720–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Tesfay, M. Z. et al. PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J. Virol. 87, 3752–3759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naito, T., Kaneko, Y. & Kozbor, D. Oral vaccination with modified vaccinia virus Ankara attached covalently to TMPEG-modified cationic liposomes overcomes pre-existing poxvirus immunity from recombinant vaccinia immunization. J. Gen. Virol. 88, 61–70 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, P.-H. et al. Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin. Biomaterials 32, 2314–2326 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Naik, S. & Russell, S. J. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin. Biol. Ther. 9, 1163–1176 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Haralambieva, I. et al. Engineering oncolytic measles virus to circumvent the intracellular innate immune response. Mol. Ther. 15, 588–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Verheije, M. H. & Rottier, P. J. M. Retargeting of viruses to generate oncolytic agents. Adv. Virol. 2012, 798526 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Navaratnarajah, C. K., Miest, T. S., Carfi, A. & Cattaneo, R. Targeted entry of enveloped viruses: measles and herpes simplex virus I. Curr. Opin. Virol. 2, 43–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Coughlan, L. et al. Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2, 2290–2355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schneider, U., Bullough, F., Vongpunsawad, S., Russell, S. J. & Cattaneo, R. Recombinant measles viruses efficiently entering cells through targeted receptors. J. Virol. 74, 9928–9936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J. Virol. 78, 302–313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boersma, Y. L. & Plückthun, A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 22, 849–857 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Friedrich, K. et al. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol. Ther. 21, 849–859 (2013). This is the first example of targeting viral entry to two different tumour markers using new specificity domains that can be easily combined.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bach, P. et al. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res. 73, 865–874 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Connolly, S. A., Jackson, J. O., Jardetzky, T. S. & Longnecker, R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nature Rev. Microbiol. 9, 369–381 (2011).

    Article  CAS  Google Scholar 

  60. Campadelli-Fiume, G., Menotti, L., Avitabile, E. & Gianni, T. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr. Opin. Virol. 2, 28–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, G., Ye, G.-J., Debinski, W. & Roizman, B. Engineered herpes simplex virus 1 is dependent on IL13Rα2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc. Natl Acad. Sci. USA 99, 15124–15129 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Kamiyama, H., Zhou, G. & Roizman, B. Herpes simplex virus 1 recombinant virions exhibiting the amino terminal fragment of urokinase-type plasminogen activator can enter cells via the cognate receptor. Gene Ther. 13, 621–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Zhou, G. & Roizman, B. Separation of receptor-binding and profusogenic domains of glycoprotein D of herpes simplex virus 1 into distinct interacting proteins. Proc. Natl Acad. Sci. USA 104, 4142–4146 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Menotti, L., Cerretani, A., Hengel, H. & Campadelli-Fiume, G. Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J. Virol. 82, 10153–10161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Menotti, L. et al. Inhibition of human tumor growth in mice by an oncolytic herpes simplex virus designed to target solely HER-2-positive cells. Proc. Natl Acad. Sci. USA 106, 9039–9044 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Grandi, P. et al. Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther. 17, 655–663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Uchida, H. et al. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol. Ther. 21, 561–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Coughlan, L. et al. Combined fiber modifications both to target αvβ6 and detarget the coxsackievirus–adenovirus receptor improve virus toxicity profiles in vivo but fail to improve antitumoral efficacy relative to adenovirus serotype 5. Hum. Gene Ther. 23, 960–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Ballard, E. N., Trinh, V. T., Hogg, R. T. & Gerard, R. D. Peptide targeting of adenoviral vectors to augment tumor gene transfer. Cancer Gene Ther. 19, 476–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Magnusson, M. K. et al. A transductionally retargeted adenoviral vector for virotherapy of Her2/neu-expressing prostate cancer. Hum. Gene Ther. 23, 70–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. MacLeod, S. H., Elgadi, M. M., Bossi, G. & Sankar, U. HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. Cancer Gene Ther. 19, 888–898 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Poulin, K. L. et al. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX. J. Virol. 84, 10074–10086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dreier, B. et al. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc. Natl Acad. Sci. USA 110, E869–E877 (2013). This paper shows the structure-guided design of a clamp-like adaptor that has been engineered on the top of the adenovirus knob domain.

    Article  CAS  PubMed  Google Scholar 

  74. Chung, R. Y., Saeki, Y. & Chiocca, E. A. B-myb promoter retargeting of herpes simplex virus γ34.5 gene-mediated virulence toward tumor and cycling cells. J. Virol. 73, 7556–7564 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kambara, H., Okano, H., Chiocca, E. A. & Saeki, Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res. 65, 2832–2839 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Foka, P. et al. Novel tumour-specific promoters for transcriptional targeting of hepatocellular carcinoma by herpes simplex virus vectors. J. Gene Med. 12, 956–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Dorer, D. E. & Nettelbeck, D. M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv. Drug Deliv. Rev. 61, 554–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Toth, K., Dhar, D. & Wold, W. S. M. Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin. Biol. Ther. 10, 353–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Harley, C. B. Telomerase and cancer therapeutics. Nature Rev. Cancer 8, 167–179 (2008).

    Article  CAS  Google Scholar 

  80. Lee, C. Y. F. et al. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors. Mol. Ther. 18, 929–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maldonado, A. R. et al. Molecular engineering and validation of an oncolytic herpes simplex virus type 1 transcriptionally targeted to midkine-positive tumors. J. Gene Med. 12, 613–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Kelly, E. J., Hadac, E. M., Greiner, S. & Russell, S. J. Engineering microRNA responsiveness to decrease virus pathogenicity. Nature Med. 14, 1278–1283 (2008). This paper is an example of controlling virus toxicity using engineered miRNA recognition sequences within the viral genome.

    Article  CAS  PubMed  Google Scholar 

  83. Ylösmäki, E. et al. Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA. J. Virol. 82, 11009–11015 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cawood, R. et al. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathog. 5, e1000440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sugio, K. et al. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin. Cancer Res. 17, 2807–2818 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Jin, H. et al. Use of microRNA Let-7 to control the replication specificity of oncolytic adenovirus in hepatocellular carcinoma cells. PLoS ONE 6, e21307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Z., Zhang, X., Newman, K. & Liu, X. MicroRNA regulation of oncolytic adenovirus 6 for selective treatment of castration-resistant prostate cancer. Mol. Cancer Ther. 11, 2410–2418 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Ylösmäki, E. et al. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver. PLoS ONE 8, e54506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, C. Y. F., Rennie, P. S. & Jia, W. W. G. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15, 5126–5135 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Fu, X., Rivera, A., Tao, L., De Geest, B. & Zhang, X. Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. Mol. Ther. 20, 339–346 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Leber, M. F. et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol. Ther. 19, 1097–1106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hikichi, M. et al. MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumor efficacy. Mol. Ther. 19, 1107–1115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelly, E. J., Nace, R., Barber, G. N. & Russell, S. J. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J. Virol. 84, 1550–1562 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Baer, C., Claus, R. & Plass, C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73, 473–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, Z. et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 331, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Boviatsis, E. J. et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 54, 5745–5751 (1994).

    CAS  PubMed  Google Scholar 

  97. Aghi, M., Kramm, C. M., Chou, T. C., Breakefield, X. O. & Chiocca, E. A. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J. Natl Cancer Inst. 90, 370–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Parker, W. B. et al. Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem. Pharmacol. 55, 1673–1681 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Ardiani, A. et al. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy. Curr. Gene Ther. 12, 77–91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K. & Yamasaki, H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl Acad. Sci. USA 93, 1831–1835 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Barese, C. N. et al. Thymidine kinase suicide gene-mediated ganciclovir ablation of autologous gene-modified rhesus hematopoiesis. Mol. Ther. 20, 1932–1943 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mailly, L., Leboeuf, C., Tiberghien, P., Baumert, T. & Robinet, E. Genetically engineered T-cells expressing a ganciclovir-sensitive HSV-tk suicide gene for the prevention of GvHD. Curr. Opin. Invest. Drugs 11, 559–570 (2010).

    CAS  Google Scholar 

  103. Huber, B. E., Austin, E. A., Richards, C. A., Davis, S. T. & Good, S. S. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl Acad. Sci. USA 91, 8302–8306 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Yamada, S. et al. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther. 19, 160–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Dias, J. D. et al. Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1. Clin. Cancer Res. 16, 2540–2549 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Foloppe, J. et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther. 15, 1361–1371 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Puhlmann, M., Gnant, M., Brown, C. K., Alexander, H. R. & Bartlett, D. L. Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum. Gene Ther. 10, 649–657 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Ungerechts, G. et al. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res. 67, 10939–10947 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Ungerechts, G. et al. Mantle cell lymphoma salvage regimen: synergy between a reprogrammed oncolytic virus and two chemotherapeutics. Gene Ther. 17, 1506–1516 (2010). This paper shows the interplay between virus replication and prodrug therapy for optimizing therapeutic outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leveille, S., Samuel, S., Goulet, M.-L. & Hiscott, J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther. 18, 435–443 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Sorscher, E. J., Hong, J. S., Allan, P. W., Waud, W. R. & Parker, W. B. In vivo antitumor activity of intratumoral fludarabine phosphate in refractory tumors expressing E. coli purine nucleoside phosphorylase. Cancer Chemother. Pharmacol. 70, 321–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seo, E. et al. Effective gene therapy of biliary tract cancers by a conditionally replicative adenovirus expressing uracil phosphoribosyltransferase: significance of timing of 5-fluorouracil administration. Cancer Res. 65, 546–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Dai, G., Levy, O. & Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 379, 458–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Kogai, T. & Brent, G. A. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol. Ther. 135, 355–370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baril, P., Martin-Duque, P. & Vassaux, G. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br. J. Pharmacol. 159, 761–771 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Touchefeu, Y., Franken, P. & Harrington, K. J. Radiovirotherapy: principles and prospects in oncology. Curr. Pharm. Des. 18, 3313–3320 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Penheiter, A. R., Russell, S. J. & Carlson, S. K. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr. Gene. Ther. 12, 33–47 (2012). This is a thorough review of the NIS reporter imaging system in multiple clinical applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Miest, T. S., Frenzke, M. & Cattaneo, R. Measles virus entry through the signaling lymphocyte activation molecule governs efficacy of mantle cell lymphoma radiovirotherapy. Mol. Ther. 21, 2019–2031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hasegawa, K. Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin. Cancer Res. 12, 1868–1875 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Myers, R. M. et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin. Pharmacol. Ther. 82, 700–710 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, H., Peng, K.-W., Dingli, D., Kratzke, R. A. & Russell, S. J. Oncolytic measles viruses encoding interferon-β and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther. 17, 550–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tong, A. W. et al. Oncolytic viruses for induction of anti-tumor immunity. Curr. Pharm. Biotechnol. 13, 1750–1760 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Breitbach, C. J., Thorne, S. H., Bell, J. C. & Kirn, D. H. Targeted and armed oncolytic poxviruses for cancer: the lead example of JX-594. Curr. Pharm. Biotechnol. 13, 1768–1772 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Breitbach, C. J. et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477, 99–102 (2011). This paper documents the efficient systemic delivery of replicating oncolytic virus to patient tumours.

    Article  CAS  PubMed  Google Scholar 

  125. Hu, J. C. et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12, 6737–6747 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Leonard, V. H. J. et al. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Invest. 118, 2448–2458 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Leonard, V. H. J., Hodge, G., Reyes-Del Valle, J., McChesney, M. B. & Cattaneo, R. Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. J. Virol. 84, 3413–3420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mühlebach, M. D. et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480, 530–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Noyce, R. S. et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 7, e1002240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fabre-Lafay, S. et al. Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer 7, 73 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Derycke, M. S. et al. Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am. J. Clin. Pathol. 134, 835–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takano, A. et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 69, 6694–6703 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. The ENCODE Project. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  135. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Yaghoubi, S. S. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics. 2, 374–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koba, W. et al. Imaging devices for use in small animals. Semin. Nucl. Med. 41, 151–165 (2011).

    Article  PubMed  Google Scholar 

  138. Ray, P. Multimodality molecular imaging of disease progression in living subjects. J. Biosci. 36, 499–504 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Cancer Institute Grant R01 CA 139398. T.S.M's salary was supported in part by grant T32 GM065841 from the US National Institute of Health and US National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cattaneo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Granulocyte–macrophage colony-stimulating factor

(GM-CSF). An immuno-stimulatory cytokine that functions as a growth factor for granulocytes and monocytes.

Serotype

A collection of viruses grouped according to common antigenic epitopes that are recognized by the same immune serum.

Coxsackie–adenovirus receptor

(CAR). An immunoglobulin-like transmembrane cell adhesion protein that is used by some coxsackievirus and adenovirus species as a receptor.

CD46

A ubiquitously expressed type-1 transmembrane protein that functions to regulate complement. It functions as a receptor for vaccine strains of measles virus and some adenovirus species.

Parenchyma

The bulk of tumours; consists of clonally transformed cells.

CD133+ cancer-initiating cells

A subset of tumour cells that have stem cell-like characteristics. They are capable of initiating new tumour growth and may drive tumour recurrence after therapy.

Prodrug

A chemotherapeutic drug that is dependent on enzymatic activation to achieve full activity.

Radioisotopes

Elements with unstable nuclei that emit γ-rays or α- or β-ionizing radiation.

Nucleoside analogues

Chemotherapeutic drugs that incorporate into replicating DNA as nucleosides but halt DNA replication, which leads to cell death.

γ-emitting isotopes

Radioactive isotopes that emit ionizing radiation in the form of high-energy electromagnetic γ rays.

β-emitting isotopes

Radioactive isotopes that emit ionizing radiation in the form of high-energy, high-speed electrons or protons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miest, T., Cattaneo, R. New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 12, 23–34 (2014). https://doi.org/10.1038/nrmicro3140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3140

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer