Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies

Key Points

  • Apicomplexa infections are widespread, life-threatening and therapeutically challenging. They include malaria, toxoplasmosis and cryptosporidiosis.

  • Plasmodium spp., Toxoplasma gondii and Cryptosporidium spp. are obligate intracellular pathogens that multiply in a parasitophorous vacuole within mammalian cells. As rapidly dividing parasites, they meet their high demand for lipids through networks of synthesis and scavenging.

  • The lipids of these Apicomplexa differ from those of their mammalian hosts, and therefore their lipid biosynthetic pathways, such as the prokaryotic methylerythritol phosphate pathway that produces isoprenoid precursors, are unique. These parasite-specific pathways are key targets for the development of selective drugs. One of these drugs, fosmidomycin, is currently used in clinics to treat malaria.

  • These apicomplexan parasites are auxotrophic for several lipids, such as cholesterol and selected sphingolipids. They scavenge these lipids from their host using unique lipid-transporter systems, which deserve to be explored as potential drug targets.

  • Apicomplexa can store lipids such as cholesteryl esters using unique enzymes. Blocking cholesterol esterification is lethal for T. gondii.

  • Very little information exists on the lipid metabolism of Cryptosporidium spp. These parasites can prenylate proteins, but the source of their isoprenoid precursors is unknown. Furthermore, no studies on sphingolipid content or sources have been undertaken in Cryptosporidium spp.

Abstract

Apicomplexa are some of the most widespread and poorly controlled pathogens in the world. The metabolism of lipids in these parasites, which include Plasmodium spp., Toxoplasma gondii and Cryptosporidium spp., is essential for the production of infectious progeny and pathogen persistence in their mammalian hosts. Metabolic maps of apicomplexan lipid syntheses reveal auxotrophies for many lipid species, which force these parasites to meet their high demand for lipids through networks of both synthesis and scavenging. Here, I review the unique lipid biosynthetic enzymes and lipid transporter systems of Apicomplexa, focusing on isoprenoids, sphingolipids and cholesterol, and highlight promising chemotherapeutic targets in the lipid synthetic and salvage pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isoprenoid precursor biosynthesis.
Figure 2: Isoprenoid biosynthetic pathways.
Figure 3: Sources of sphingolipids for Plasmodium spp. and Toxoplasma gondii.
Figure 4: Host cholesterol sources for Apicomplexa.

Similar content being viewed by others

References

  1. Sachs, S. & Malaney, P. The economic and social burden of malaria. Nature 415, 680–685 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tenter, A. M., Heckeroth, A. R. & Weiss, L. M. Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 30, 1217–1258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luft, B. J. & Remington, J. S. Toxoplasmic encephalitis in AIDS. Clin. Infect. Dis. 15, 211–222 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Kieffer, F. & Wallon, M. Congenital toxoplasmosis. Handb. Clin. Neurol. 112, 1099–1101 (2013).

    Article  PubMed  Google Scholar 

  6. Savioli, L., Smith, H. & Thompson, A. Giardia and Cryptosporidium join the 'Neglected Diseases Initiative'. Trends Parasitol. 22, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. López-Vélez, R. et al. Intestinal and extraintestinal cryptosporidiosis in AIDS patients. Eur. J. Clin. Microbiol. Infect. Dis. 14, 677–681 (1995).

    Article  PubMed  Google Scholar 

  8. Olliaro, P. & Wells, T. N. The global portfolio of new antimalarial medicines under development. Clin. Pharmacol. Ther. 85, 584–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Müller, J. & Hemphill, A. Drug target identification in intracellular and extracellular protozoan parasites. Curr. Top. Med. Chem. 11, 2029–2038 (2011).

    Article  PubMed  Google Scholar 

  10. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rub, A., Arish, M., Husain, S. A., Ahmed, N. & Akhter, Y. Host-lipidome as a potential target of protozoan parasites. Microbes Infect. 15, 649–660 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ramakrishnan, S., Serricchio, M., Striepen, B. & Bütikofer, P. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Prog. Lipid Res. 52, 488–512 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Qureshi, N. & Porte, J. W. in Biosynthesis of isoprenoid compounds Vol. 1 (eds Porter, J. W. & Spurgeon, S. L.) 47–94 (Wiley, 1981).

    Google Scholar 

  14. Gräwert, T., Groll, M., Rohdich, F., Bacher, A. & Eisenreich, W. Biochemistry of the non-mevalonate isoprenoid pathway. Cell. Mol. Life Sci. 68, 3797–3814 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Cassera, M. B. et al. The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. J. Biol. Chem. 279, 51749–51759 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Clastre, M. et al. The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: presence and sensitivity to fosmidomycin. Exp. Parasitol. 116, 375–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Striepen, B. The apicoplast: a red alga in human parasites. Essays Biochem. 51, 111–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Horbach, S., Sahm, H. & Welle, R. Isoprenoid biosynthesis in bacteria: two different pathways? FEMS Microbiol. Lett. 111, 135–140 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Lichtenthaler, H. K., Schwender, J., Disch, A. & Rohmer, M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 400, 271–274 (1997). This study provides the first evidence of an MEP pathway that is functionally active in all Plasmodium spp. blood stages. It also provides a demonstration of the effects of fosmidomycin on the biosynthesis of each intermediate of the MEP pathway and isoprenoid biosynthetic pathway.

    Article  CAS  PubMed  Google Scholar 

  20. Seeber, F. & Soldati-Favre, D. Metabolic pathways in the apicoplast of apicomplexa. Int. Rev. Cell. Mol. Biol. 281, 161–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Yeh, E. & DeRisi, J. L. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 9, e1001138 (2011). This paper shows that apicoplast-depleted P. falciparum can grow indefinitely in erythrocytes if IPP is exogenously supplied in the medium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas, S. L. & Lew, V. L. Plasmodium falciparum and the permeation pathway of the host red blood cell. Trends Parasitol. 20, 122–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Odom, A. R. & Van Voorhis, W. C. Functional genetic analysis of the Plasmodium falciparum deoxyxylulose 5-phosphate reductoisomerase gene. Mol. Biochem. Parasitol. 170, 108–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Jomaa, H. et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573–1576 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Wiesner, J., Reichenberg, A., Heinrich, S., Schlitzer, M. & Jomaa, H. The plastid-like organelle of apicomplexan parasites as drug target. Curr. Pharm. Des. 14, 855–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hunter, W. N. Isoprenoid precursor biosynthesis offers potential targets for drug discovery against diseases caused by apicomplexan parasites. Curr. Top. Med. Chem. 11, 2048–2059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lell, B. et al. Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob. Agents Chemother. 47, 735–738 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiesner, J., Borrmann, S. & Jomaa, H. Fosmidomycin for the treatment of malaria. Parasitol. Res. 90, S71–76 (2003).

    Article  PubMed  Google Scholar 

  29. Dharia, N. V. et al. Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biol. 10, R21 (2009). This study used a microarray-based approach to attribute P. falciparum fosmidomycin resistance to a copy number variation event in the gene encoding DOXP reductase, the key enzyme of the MEP pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, B. et al. A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 50, 3570–3577 (2011). A cellular metabolic profiling study demonstrating that fosmidomycin inhibits not only Plasmodium spp. DOXP reductase but also the downstream enzyme of the MEP pathway, which suggests that this pathway is highly regulated by as-yet-unknown mechanisms.

    Article  CAS  PubMed  Google Scholar 

  31. Ralph, S. A. et al. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nature Rev. Microbiol. 2, 203–216 (2004).

    Article  CAS  Google Scholar 

  32. Mullin, K. A. et al. Membrane transporters in the relict plastid of malaria parasites. Proc. Natl Acad. Sci. USA 103, 9572–9577 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarun, A. S. et al. A combined transcriptome and proteome survey of malaria parasite liver stages. Proc. Natl Acad. Sci. USA 105, 305–310 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baumeister, S. et al. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. PLoS ONE 6, e19334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jordão, F. M. et al. Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum. Malar. J. 12, 184–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skelton, F. S. et al. Biosynthesis of ubiquinones by malarial parasites. I. Isolation of [14C]ubiquinones from cultures of rhesus monkey blood infected with Plasmodium knowlesi. Biochemistry 8, 1284–1287 (1969).

    Article  CAS  PubMed  Google Scholar 

  37. Couto, A. S., Kimura, E. A., Peres, V. J., Uhrig, M. L. & Katzin, A. M. Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. Biochem. J. 341, 629–637 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Macedo, C. S., Shams-Eldin, H., Smith, T. K., Schwarz, R. T. & Azzouz, N. Inhibitors of glycosyl-phosphatidylinositol anchor biosynthesis. Biochimie 85, 465–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kimmel, J. et al. Glycosylphosphatidyl-inositols in murine malaria: Plasmodium yoelii yoelii. Biochimie 85, 473–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Chakrabarti, D. et al. Protein prenyl transferase activities of Plasmodium falciparum. Mol. Biochem. Parasitol. 94, 175–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Chakrabarti, D. et al. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J. Biol. Chem. 277, 42066–42073 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Wiesner, J. et al. Farnesyltransferase inhibitors inhibit the growth of malaria parasites in vitro and in vivo. Angew. Chem. Int. Ed. Engl. 43, 251–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Pendyala, P. R. et al. Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparum. Mol. Biochem. Parasitol. 158, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Howe, R., Kelly, M., Jimah, J., Hodge, D. & Odom, A. R. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryot. Cell. 12, 215–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ayong, L., DaSilva, T., Mauser, J., Allen, C. M. & Chakrabarti, D. Evidence for prenylation-dependent targeting of a Ykt6 SNARE in Plasmodium falciparum. Mol. Biochem. Parasitol. 175, 162–168 (2001).

    Article  CAS  Google Scholar 

  46. Tonhosolo, R. et al. Carotenoid biosynthesis in intraerythrocytic stages of Plasmodium falciparum. J. Biol. Chem. 284, 9974–9985 (2009). This study identified an enzyme in P. falciparum encoding a plant phytoene synthase in the carotenoid biosynthetic pathway, which represents a promising target for herbicides against malaria infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mukkamala, D., No, J. H., Cass, L. M., Chang, T. K. & Oldfield, E. Bisphosphonate inhibition of a Plasmodium farnesyl diphosphate synthase and a general method for predicting cell-based activity from enzyme data. J. Med. Chem. 51, 7827–7833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sing, A. P. et al. Lipophilic bisphosphonates are potent inhibitors of Plasmodium liver-stage growth. Antimicrob. Agents Chemother. 54, 2987–2993 (2010).

    Article  CAS  Google Scholar 

  49. Rodrigues Goulart, H. et al. Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. Antimicrob. Agents Chemother. 48, 2502–2509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nair, S. C. et al. Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii. J. Exp. Med. 208, 1547–1559 (2011). These authors demonstrated that the insensitivity of T. gondii to fosmidomycin is caused by non-internalization of the drug and that expression of a bacterial GlpT allows fosmidomycin penetration and activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ling, Y. et al. Bisphosphonate inhibitors of Toxoplasma gondii growth: in vitro, QSAR, and in vivo investigations. J. Med. Chem. 48, 3130–3140 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Takahata, S. et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int. J. Antimicrob. Agents. 35, 333–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Matsue, Y. et al., The herbicide ketoclomazone inhibits 1-deoxy-D-xylulose 5-phosphate synthase in the 2-C-methyl-D-erythritol 4-phosphate pathway and shows antibacterial activity against Haemophilus influenzae. J. Antibiot. 63, 583–588 (2010).

    Article  CAS  Google Scholar 

  54. Ling, Y., Li, Z. H., Miranda, K., Oldfield, E. & Moreno, S. N. The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. J. Biol. Chem. 282, 30804–30816 (2007). This paper reports the cloning and functional characterization of a unique T. gondii prenyl synthase that uses various substrates and is targeted by bisphosphonates.

    Article  CAS  PubMed  Google Scholar 

  55. Ibrahim, M., Azzouz, N., Gerold, P. & Schwarz, R. T. Identification and characterisation of Toxoplasma gondii protein farnesyltransferase. Int. J. Parasitol. 31, 1489–1497 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Moreno, S. N. & Li, Z. H. Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii. Expert Opin. Ther. Targets 12, 253–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Striepen, B., Dubremetz, J. F. & Schwarz, R. T. Glucosylation of glycosylphosphatidylinositol membrane anchors: identification of uridine diphosphate-glucose as the direct donor for side chain modification in Toxoplasma gondii using carbohydrate analogues. Biochemistry 38, 1478–1487 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Dieckmann-Schuppert, A., Bause, E. & Schwarz, R. T. Glycosylation reactions in Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei brucei probed by the use of synthetic peptides. Biochim. Biophys. Acta 1199, 37–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Luk, F. C., Johnson, T. M. & Beckers, C. J. N-linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii. Mol. Biochem. Parasitol. 157, 169–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Nagamune, K. et al. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451, 207–210 (2008). This study showed that T. gondii has a plant-like pathway that produces the phytohormone abscisic acid, which controls calcium signalling within the parasite and egress from host cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, H. H. et al. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochem. Pharmacol. 82, 701–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Martin, M. B. et al. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J. Med. Chem. 44, 909–916.

  63. Yardley, V. et al. In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrob. Agents Chemother. 46, 929–931 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qian, Y., Sebti, S. M. & Hamilton, A. D. Farnesyltransferase as a target for anticancer drug design. Biopolymers 43, 25–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Xu, P. et al. The genome of Cryptosporidium hominis. Nature 431, 1107–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Artz, J. D. et al. Targeting a uniquely nonspecific prenyl synthase with bisphosphonates to combat cryptosporidiosis. Chem. Biol. 15, 1296–1306 (2008). The first cloning and functional characterization of a prenyl synthase in C. parvum , highlighting the unique properties of the enzyme in producing very long isoprenoids using a large variety of substrates.

    Article  CAS  PubMed  Google Scholar 

  68. Bessoff, K., Sateriale, A., Lee, K. K. & Huston, C. D. Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block Cryptosporidium parvum growth. Antimicrob. Agents Chemother. 57, 1804–1814 (2013). This study emphasizes that the growth of Cryptosporidium parvum relies on several lipids produced by the host mevalonate pathway, such as IPP and cholesterol, which the parasite cannot synthesize.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lawrence, C. W. & Cenedella, R. J. Lipid content of Plasmodium berghei-infected rat red blood cells. Exp. Parasitol. 26, 181–186 (1969).

    Article  CAS  PubMed  Google Scholar 

  70. Lauer, S. A., Rathod, P. K., Ghori, N. & Haldar, K. A membrane network for nutrient import in red cells infected with the malaria parasite. Science 276, 1122–1125 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Haldar, K. Sphingolipid synthesis and membrane formation by Plasmodium. Trends Cell. Biol. 6, 398–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Huitema, K., van den Dikkenberg, J., Brouwers, J. F. & Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Elmendorf, H. G. & Haldar, K. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubulovesicular network in the cytoplasm of mature erythrocytes. J. Cell Biol. 124, 449–462 (1994). These authors show that P. falciparum blood forms elaborate a TVN derived from the parasitophorous vacuole membrane by exporting their own sphingomyelin synthase into the host cell, resulting in the local production of sphingolipids in the network.

    Article  CAS  PubMed  Google Scholar 

  74. Elmendorf, H. G. & Haldar, K. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. EMBO J. 12, 4763–4773 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ansorge, I., Jeckel, D., Wieland, F. & Lingelbach, K. Plasmodium falciparum-infected erythrocytes utilize a synthetic truncated ceramide precursor for synthesis and secretion of truncated sphingomyelin. Biochem. J. 308, 335–341 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gerold, P. & Schwarz, R. T. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 112, 29–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Landoni, M. et al. Plasmodium falciparum biosynthesizes sulfoglycosphingolipids. Mol. Biochem. Parasitol. 154, 22–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Couto, A. S. et al. Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase. Eur. J. Biochem. 271, 2204–2214 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Hanada, K. et al. Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible target for malaria chemotherapy. J. Exp. Med. 195, 23–34 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Essaka, D. C. et al. Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 82, 9955–9958 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haldar, K., Uyetake, L., Ghori, N., Elmendorf, H. G. & Li, W. L. The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes. Mol. Biochem. Parasitol. 49, 143–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Pankova-Kholmyansky, I. et al. Ceramide mediates growth inhibition of the Plasmodium falciparum parasites. Cell. Mol. Life Sci. 60, 577–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Grellepois, F., Grellier, P., Bonnet-Delpon, D. & Bégué, J. P. Design, synthesis and antimalarial activity of trifluoromethylartemisinin-mefloquine dual molecules. Chembiochem. 6, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Lauer, S. et al. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556–3564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pankova-Kholmyansky, I. & Flescher, E. Potential new antimalarial chemotherapeutics based on sphingolipid metabolism. Chemotherapy 52, 205–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Labaied, M. et al. Anti-Plasmodium activity of ceramide analogs. Malar. J. 3, 49–59 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lige, B. et al. Deficiency of a Niemann–Pick, type C1-related protein in Toxoplasma is associated with multiple lipidoses and increased pathogenicity. PLoS Pathog. 7, e1002410 (2010).

    Article  CAS  Google Scholar 

  88. Welti, R. et al. Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. Biochemistry 46, 13882–13889 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Azzouz, N. et al. Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii. Int. J. Parasitol. 32, 677–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Bisanz, C. et al. Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochem. J. 394, 197–205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zinecker, C. F. et al. Two glycoforms are present in the GPI-membrane anchor of the surface antigen 1 (P30) of Toxoplasma gondii. Mol. Biochem. Parasitol. 116, 127–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, K., Bangs, J. D. & Beverley, S. M. Sphingolipids in parasitic protozoa. Adv. Exp. Med. Biol. 688, 238–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sonda, S., Sala, G., Ghidoni, R., Hemphill, A. & Pieters, J. Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrob. Agents Chemother. 49, 1794–1801 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pratt, S. et al. Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Mol. Biochem. Parasitol. 187, 43–51 (2013). This study details the first cloning and functional characterization of an enzyme in the sphingolipid biosynthetic pathway of T. gondii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Melo, E. J. & De Souza, W. Pathway of C6-NBD-ceramide on the host cell infected with Toxoplasma gondii. Cell Struct. Funct. 21, 47–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Romano, J. D., Sonda, S., Bergbower, E., Smith, M. E. & Coppens, I. Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol. Biol. Cell. 24, 1947–1985 (2013). This study shows that although T. gondii can synthesize sphingolipids de novo , it also scavenges these lipids from the host Golgi apparatus by subverting the structure and functions of this organelle.

    Article  Google Scholar 

  97. Hanada, K. et al. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J. Biol. Chem. 273, 33787–33794 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Ng, C. G. et al. Effect of host cell lipid metabolism on alphavirus replication, virion morphogenesis, and infectivity. Proc. Natl Acad. Sci. USA 105, 16326–16331 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ricard, J., Pelloux, H., Pathak, S., Pipy, B. & Ambroise-Thomas, P. TNF-α enhances Toxoplasma gondii cyst formation in human fibroblasts through the sphingomyelinase pathway. Cell Signal 8, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Labaied, M. et al. Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell. Microbiol. 13, 569–586 (2011). This paper demonstrates that Plasmodium spp. liver forms retrieve cholesterol from both LDL and the host mevalonate pathway and adapt to cholesterol-restrictive conditions by switching between these sources to maintain infectivity.

    Article  CAS  PubMed  Google Scholar 

  102. Grellier, P., Rigomier, D. & Schrével, J. In vitro induction of Plasmodium falciparum schizogony by human high density lipoproteins (HDL). C. R. Acad. Sci. III 311, 361–367 (1990).

    CAS  PubMed  Google Scholar 

  103. Grellier, P., Rigomier, D., Clavey, V., Fruchart, J. C. & Schrevel, J. Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells. J. Cell Biol. 112, 267–277 (1991). This study details how plasma HDL particles support the growth of P. falciparum blood forms by supplying essential lipids, including cholesterol, to the parasite.

    Article  CAS  PubMed  Google Scholar 

  104. Hiller, N. L., Akompong, T., Morrow, J. S., Holder, A. A. & Haldar, K. Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis. J. Biol. Chem. 278, 48413–48421 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Di Girolamo, F. et al. Plasmodium lipid rafts contain proteins implicated in vesicular trafficking and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics 8, 2500–2513 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Albuquerque, S. S. et al. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genomics 10, 270–283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bano, N., Romano, J. D., Jayabalasingham, B. & Coppens, I. Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int. J. Parasitol. 37, 1329–1341 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Lopes da Silva, M. et al. The host endocytic pathway is essential for Plasmodium berghei late liver stage development. Traffic 13, 1351–1363 (2012). This paper shows that Plasmodium berghei liver forms reroute host endocytic structures to the parasitophorous vacuole and use the contents of these organelles as a source of nutrients derived from the medium.

    Article  CAS  PubMed  Google Scholar 

  109. Rodrigues, C. D. et al. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host Microbe 4, 271–282 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Yalaoui, S. et al. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell Host Microbe 4, 283–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Cascio, M. Connexins and their environment: effects of lipids composition on ion channels. Biochim. Biophys. Acta 1711, 142–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Coppens, I. & Vielemeyer, O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int. J. Parasitol. 35, 597–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Coppens, I., Sinai, A. P. & Joiner, K. A. Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition. J. Cell Biol. 149, 167–180 (2000). This study shows that T. gondii is auxotrophic for LDL-derived cholesterol and that interference with LDL endocytosis in the host cell reduces parasite replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sinai, A. P., Webster, P. & Joiner, K. A. Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. J. Cell Sci. 110, 2117–2128 (1997).

    CAS  PubMed  Google Scholar 

  115. Nishikawa, Y. et al. Host cholesterol synthesis contributes to growth of intracellular Toxoplasma gondii in macrophages. J. Vet. Med. Sci. 73, 633–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Sehgal, A. et al. Peculiarities of host cholesterol transport to the unique intracellular vacuole containing Toxoplasma. Traffic 6, 1125–1141 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Coppens, I. et al. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125, 261–274 (2006) (2006). These authors found that T. gondii engulfs host digestive organelles and nutrients at the surface of the parasitophorous vacuole within finger-like protrusions of the vacuolar membrane.

    Article  CAS  PubMed  Google Scholar 

  118. Bottova, I. et al. Host cell P-glycoprotein is essential for cholesterol uptake and replication of Toxoplasma gondii. J. Biol. Chem. 284, 17438–17448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ehrenman, K. et al. Novel roles for ATP-binding cassette G transporters in lipid redistribution in Toxoplasma. Mol. Microbiol. 76, 1232–1249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lige, B., Jayabalasingham, B., Zhang, H., Pypaert, M. & Coppens, I. Role of an ancestral D-bifunctional protein containing two sterol-carrier protein-2 domains in lipid uptake and trafficking in Toxoplasma. Mol. Biol. Cell 20, 658–672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nishikawa, Y. et al. Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell. Microbiol. 7, 849–867 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Lige, B., Sampels, V. & Coppens, I. Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite. Mol. Microbiol. 87, 951–967 (2013). This study shows that T. gondii expresses two ACAT enzymes involved in the storage of cholesterol and that the parasite is particularly vulnerable to ACAT inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dantas-Leite, L., Urbina, J. A., de Souza, W. & Vommaro, R. C. Selective anti-Toxoplasma gondii activities of azasterols. Int. J. Antimicrob. Agents 23, 620–626 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Martins-Duarte, E. S. et al. Evaluation of three novel azasterols against Toxoplasma gondii. Vet. Parasitol. 177, 157–161 (2011). These authors found that T. gondii scavenges different sterols indiscriminately, including poisonous azasterols, which results in its encystation.

    Article  CAS  PubMed  Google Scholar 

  125. Ehrenman, K., Wanyiri, J. W., Bhat, N., Ward, H. D. & Coppens, I. Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cell. Microbiol. 15, 1182–1197 (2013). This group found that C. parvum locates itself at the apex of enterocytes and retrieves nutrients such as cholesterol from both the gut's lumen and the host cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sané, A. T. et al. Localization and role of NPC1L1 in cholesterol absorption in human intestine. J. Lipid Res. 47, 2112–2120 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7, 508–519 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank all former and current members of my laboratory for their scientific contributions highlighted in this Review. I am also grateful to J. Romano for editorial assistance and scientific comments and to A. Odom for discussions on sphingolipids in malaria. Finally, I acknowledge grants from the US National Institutes of Health and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Coppens.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Auxotrophies

The inability of an organism to synthesize particular organic compounds that are required for its growth, metabolism and reproduction.

Pyrophosphate

An ester of pyrophosphoric acid, such as isopentenyl pyrophosphate, geranyl pyrophosphate and farnesyl pyrophosphate.

Ubiquinones

Electron carriers and major components of the aerobic respiratory chains located in mitochondria.

Dolichols

Compounds that are composed of a chain of isoprene units of varying lengths and are found either free or phosphorylated in the membranes of the endoplasmic reticulum and Golgi apparatus. They play a part in the co-translational modification of proteins known as N-glycosylation.

Phytoene desaturase

One of the key enzymes in the carotenoid biosynthetic pathway that converts the colourless phytoene to coloured carotenoids. This enzyme is present in nearly all types of plastids in plants and is a target for herbicides, such as norflurazon.

Chitobiose core

A disaccharide made of two N-acetylglucosamines. N-linked oligosaccharides are attached to the amide nitrogen of asparagine in proteins, and the linkage occurs through a chitobiose core.

Parasitophorous vacuole

A specialized, membrane-bound compartment created by apicomplexan parasites at the interface between the host-cell cytosol and the parasite for their multiplication. The parasitophorous vacuole membrane contains numerous parasite proteins involved in its structural organization, nutrient acquisition and signalling.

Schizont

A multinucleate stage in the development of malaria parasites, producing a varied number of daughter merozoites. This process of reproduction is called schizogony.

Low-density lipoprotein particles

(LDL particles). Plasma lipoproteins involved in the transport of cholesterol from the liver to all of the body's tissues. They deliver cholesterol to cells through LDL receptor-mediated endocytosis, and intracellular cholesterol is used for membrane biogenesis and function. LDL particles are highly atherogenic.

High-density lipoprotein particles

(HDL particles). Plasma lipoproteins involved in collecting cholesterol from the body's tissues and transporting the lipid back to the liver for excretion into the bile. Cholesterol incorporated into HDL is expelled from liver cells by HDL receptors, such as scavenger receptor class B type I. HDL particles also transport cholesterol to steroidogenic organs for the synthesis of steroid hormones.

Micelles

Aggregates of surfactant molecules dispersed in a liquid colloid. In the intestine, micelles are made of monoglycerides and fatty acids that associate with bile salts and phospholipids. Dietary cholesterol is incorporated into micelles and taken up into enterocytes via the Niemann–Pick type C1-like 1 transporter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppens, I. Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat Rev Microbiol 11, 823–835 (2013). https://doi.org/10.1038/nrmicro3139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing