Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ins and outs of hepatitis C virus entry and assembly

Key Points

  • Hepatitis C virus (HCV) is an enveloped, positive-strand RNA virus. Unlike other enveloped RNA viruses, HCV particles interact with serum lipoproteins, which are important for the infectivity of HCV particles.

  • New structural information is available for E2 glycoprotein of the related pestiviruses. Common features of HCV and pestiviruses suggest that these viruses use an uncharacterized mechanism of viral fusion.

  • HCV particles enter cells via a multistep process involving numerous cell surface proteins, cellular processing of virus-associated lipoproteins, signal transduction events, clathrin-mediated internalization of the virus, and low-pH-induced membrane fusion.

  • HCV particle assembly occurs via budding into the ER. This process requires recently defined interactions between the viral structural and non-structural proteins.

  • Nascent HCV particles exit the cell via transit through the secretory pathway. During this process, HCV undergoes maturational events similar to those of serum lipoproteins.

Abstract

Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural aspects of HCV and related viruses.
Figure 2: HCV entry.
Figure 3: HCV assembly and secretion.

Similar content being viewed by others

References

  1. Lavanchy, D. The global burden of hepatitis C. Liver Int. 29 (Suppl. 1), 74–81 (2009).

    Article  PubMed  Google Scholar 

  2. Pawlotsky, J. M. Treatment of chronic hepatitis C: current and future. Curr. Top. Microbiol. Immunol. 369, 321–342 (2013).

    CAS  PubMed  Google Scholar 

  3. Lindenbach, B. D., Murray, C. L., Thiel, H. J. & Rice, C. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 712–746 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  4. King, A. M. Q., Lefkowitz, E., Adams, M. J. & Carstens, E. B. (eds) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier, 2011).

    Google Scholar 

  5. Morikawa, K. et al. Nonstructural protein 3-4A: the Swiss army knife of hepatitis C virus. J. Viral Hepat 18, 305–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lohmann, V. Hepatitis C virus RNA replication. Curr. Top. Microbiol. Immunol. 369, 167–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Niepmann, M. Hepatitis C virus RNA translation. Curr. Top. Microbiol. Immunol. 369, 143–166 (2013).

    CAS  PubMed  Google Scholar 

  8. Schoggins, J. W. & Rice, C. M. Innate immune responses to hepatitis C virus. Curr. Top. Microbiol. Immunol. 369, 219–242 (2013).

    CAS  PubMed  Google Scholar 

  9. Feinstone, S. M., Kapikian, A. Z., Purcell, R. H., Alter, H. J. & Holland, P. V. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N. Engl. J. Med. 292, 767–770 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989). This is a classic paper that identifies HCV as the aetiological agent of non-A, non-B hepatitis.

    Article  CAS  PubMed  Google Scholar 

  11. Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Yanagi, M., Purcell, R. H., Emerson, S. U. & Bukh, J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc. Natl Acad. Sci. USA 94, 8738–8743 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lohmann, V. HCV replicons: overview and basic protocols. Methods Mol. Biol. 510, 145–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Baumert, T. F., Ito, S., Wong, D. T. & Liang, T. J. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J. Virol. 72, 3827–3836 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Bartosch, B., Dubuisson, J. & Cosset, F. L. Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J. Exp. Med. 197, 633–642 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Drummer, H. E., Maerz, A. & Poumbourios, P. Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Lett. 546, 385–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hsu, M. et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl Acad. Sci. USA 100, 7271–7276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11, 791–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005). References 18–20 describe the first HCVcc systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinmann, E. & Pietschmann, T. Cell culture systems for hepatitis C virus. Curr. Top. Microbiol. Immunol. 369, 17–48 (2013).

    CAS  PubMed  Google Scholar 

  22. Yamamoto, T., Takahashi, S., Moriwaki, Y., Hada, T. & Higashino, K. A newly discovered apolipoprotein B- containing high-density lipoprotein produced by human hepatoma cells. Biochim. Biophys. Acta 922, 177–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Lindenbach, B. D. et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc. Natl Acad. Sci. USA 103, 3805–3809 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Podevin, P. et al. Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139, 1355–1364 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Ploss, A. et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc. Natl Acad. Sci. USA 107, 3141–3145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Billerbeck, E., de Jong, Y., Dorner, M., de la Fuente, C. & Ploss, A. Animal models for hepatitis C. Curr. Top. Microbiol. Immunol. 369, 49–86 (2013).

    CAS  PubMed  Google Scholar 

  27. Tscherne, D. M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol. 80, 1734–1741 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bradley, D. W. et al. Posttransfusion non-A, non-B hepatitis in chimpanzees: physicochemical evidence that the tubule-forming agent is a small, enveloped virus. Gastroenterology 88, 773–779 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Gastaminza, P. et al. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J. Virol. 84, 10999–11009 (2010). This study provides high-resolution images of highly enriched HCVcc particles.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. He, L. F. et al. Determining the size of non-A, non-B hepatitis virus by filtration. J. Infect. Dis. 156, 636–640 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Merz, A. et al. Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J. Biol. Chem. 286, 3018–3032 (2011). This report describes proteomic, lipidomic and structural analyses of highly purified HCVcc particles.

    Article  CAS  PubMed  Google Scholar 

  32. Catanese, M. T. et al. Ultrastructural analysis of hepatitis C virus particles. Proc. Natl Acad. Sci. USA 110, 9505–9510 (2013). This work obtains high-resolution images of affinity-captured HCVcc particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nature Rev. Microbiol. 3, 13–22 (2005).

    Article  CAS  Google Scholar 

  34. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. DuBois, R. M. et al. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493, 552–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Dessau, M. & Modis, Y. Crystal structure of glycoprotein C from Rift Valley fever virus. Proc. Natl Acad. Sci. USA 110, 1696–1701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kielian, M. & Rey, F. A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Rev. Microbiol. 4, 67–76 (2006).

    Article  CAS  Google Scholar 

  39. Kadlec, J., Loureiro, S., Abrescia, N. G., Stuart, D. I. & Jones, I. M. The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nature Struct. Mol. Biol. 15, 1024–1030 (2008).

    Article  CAS  Google Scholar 

  40. Garry, R. F. & Dash, S. Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology 307, 255–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Krey, T. et al. The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog. 6, e1000762 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yagnik, A. T. et al. A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40, 355–366 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. El Omari, K., Iourin, O., Harlos, K., Grimes, J. M. & Stuart, D. I. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep. 3, 30–35 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li, Y., Wang, J., Kanai, R. & Modis, Y. Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proc. Natl Acad. Sci. USA 110, 6805–6810 (2013). This article reports the crystal structure of a pestivirus E2 glycoprotein, revealing a new viral glycoprotein architecture that might serve as a model for HCV E2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Hulst, M. M. & Moormann, R. J. Inhibition of pestivirus infection in cell culture by envelope proteins Erns and E2 of classical swine fever virus: Erns and E2 interact with different receptors. J. Gen. Virol. 78, 2779–2787 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Krey, T., Thiel, H. J. & Rümenapf, T. Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J. Virol. 79, 4191–4200 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vieyres, G. et al. Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J. Virol. 84, 10159–10168 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Drummer, H. E., Boo, I. & Poumbourios, P. Mutagenesis of a conserved fusion peptide-like motif and membrane-proximal heptad-repeat region of hepatitis C virus glycoprotein E1. J. Gen. Virol. 88, 1144–1148 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Flint, M. et al. Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J. Virol. 73, 6782–6790 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Hijikata, M. et al. Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. J. Virol. 67, 1953–1958 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Thomssen, R. et al. Association of hepatitis C virus in human sera with β-lipoprotein. Med. Microbiol. Immunol. 181, 293–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Lindenbach, B. D. Virion assembly and release. Curr. Top. Microbiol. Immunol. 369, 199–218 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Kono, Y., Hayashida, K., Tanaka, H., Ishibashi, H. & Harada, M. High-density lipoprotein binding rate differs greatly between genotypes 1b and 2a/2b of hepatitis C virus. J. Med. Virol. 70, 42–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Felmlee, D. J. et al. Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles. Gastroenterology 139, 1774–1783 (2010). This study shows that the interaction between HCV and serum lipoproteins is transient and exchangeable in vivo.

    Article  CAS  PubMed  Google Scholar 

  58. Diaz, O. et al. Preferential association of hepatitis C virus with apolipoprotein B48-containing lipoproteins. J. Gen. Virol. 87, 2983–2991 (2006).

    Article  PubMed  CAS  Google Scholar 

  59. Chang, K. S., Jiang, J., Cai, Z. & Luo, G. Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture. J. Virol. 81, 13783–13793 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Meunier, J. C. et al. Apolipoprotein C1 association with hepatitis C virus. J. Virol. 82, 9647–9656 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hsu, V. W., Bai, M. & Li, J. Getting active: protein sorting in endocytic recycling. Nature Rev. Mol. Cell Biol. 13, 323–328 (2012).

    Article  CAS  Google Scholar 

  62. Helenius, A. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 87–104 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  63. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 96, 12766–12771 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Germi, R. et al. Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J. Med. Virol. 68, 206–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 57, 223–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Albecka, A. et al. Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology 55, 998–1007 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Petracca, R. et al. Structure-function analysis of hepatitis C virus envelope-CD81 binding. J. Virol. 74, 4824–4830 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Bertaux, C. & Dragic, T. Different domains of CD81 mediate distinct stages of hepatitis C virus pseudoparticle entry. J. Virol. 80, 4940–4948 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bankwitz, D. et al. Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes. J. Virol. 84, 5751–5763 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sharma, N. R. et al. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J. Biol. Chem. 286, 30361–30376 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Harris, H. J. et al. Claudin association with CD81 defines hepatitis C virus entry. J. Biol. Chem. 285, 21092–21102 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dorner, M. et al. A genetically humanized mouse model for hepatitis C virus infection. Nature 474, 208–211 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dorner, M. et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature http://dx.doi.org/10.1038/nature12427 (2013). References 72 and 73 demonstrate that mice expressing human CD81 and OCLN are permissive to HCV infection.

  74. Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Dao Thi, V. L. et al. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J. Biol. Chem. 287, 31242–31257 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zahid, M. N. et al. The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology 57, 492–504 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Reynolds, G. M. et al. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 47, 418–427 (2008).

    Article  PubMed  Google Scholar 

  79. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sourisseau, M. et al. Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS Pathog. 9, e1003244 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Martin, D. N. & Uprichard, S. L. Identification of transferrin receptor 1 as a hepatitis C virus entry factor. Proc. Natl Acad. Sci. USA (2013).

  82. Sainz, B. Jr et al. Identification of the Niemann-Pick C1- like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nature Med. 18, 281–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Jia, L., Betters, J. L. & Yu, L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol. 73, 239–259 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Farquhar, M. J. et al. Protein kinase A-dependent step(s) in hepatitis C virus entry and infectivity. J. Virol. 82, 8797–8811 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Brazzoli, M. et al. CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J. Virol. 82, 8316–8329 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Farquhar, M. J. et al. Hepatitis C virus induces CD81 and claudin-1 endocytosis. J. Virol. 86, 4305–4316 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lupberger, J. et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Med. 17, 589–595 (2011). This investigation finds that EGFR and EPHA2 are essential for HCV entry because of their ability to promote the CD81–CLDN1 interaction.

    Article  CAS  PubMed  Google Scholar 

  88. Diao, J. et al. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J. Virol. 86, 10935–10949 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zona, L. et al. HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex. Cell Host Microbe 13, 302–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Lupberger, J. et al. EGFR signaling impairs the antiviral activity of interferon-alpha. Hepatology http://dx.doi.org/10.1002/hep.26404 (2013).

  91. Coller, K. E. et al. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog. 5, e1000702 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sattentau, Q. Avoiding the void: cell-to-cell spread of human viruses. Nature Rev. Microbiol. 6, 815–826 (2008).

    Article  CAS  Google Scholar 

  93. Wahid, A. & Dubuisson, J. Virus-neutralizing antibodies to hepatitis C virus. J. Viral Hepat. 20, 369–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Brimacombe, C. L. et al. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J. Virol. 85, 596–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Catanese, M. T. et al. Different requirements for SR-BI in hepatitis C virus cell-free versus cell-to-cell transmission. J. Virol. 87, 8282–8293 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Timpe, J. M. et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47, 17–24 (2008).

    Article  PubMed  Google Scholar 

  97. Witteveldt, J. et al. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J. Gen. Virol. 90, 48–58 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gastaminza, P. et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J. Virol. 82, 2120–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Gastaminza, P., Kapadia, S. B. & Chisari, F. V. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J. Virol. 80, 11074–11081 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Boulant, S. et al. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J. Biol. Chem. 281, 22236–22247 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Majeau, N. et al. Palmitoylation of hepatitis C virus core protein is important for virion production. J. Biol. Chem. 284, 33915–33925 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Barba, G. et al. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc. Natl Acad. Sci. USA 94, 1200–1205 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Boulant, S., Vanbelle, C., Ebel, C., Penin, F. & Lavergne, J. P. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J. Virol. 79, 11353–11365 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Moradpour, D., Englert, C., Wakita, T. & Wands, J. R. Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222, 51–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Boulant, S., Targett-Adams, P. & McLauchlan, J. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J. Gen. Virol. 88, 2204–2213 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biol. 9, 1089–1097 (2007). This study shows that trafficking of HCV core protein to LDs is important for virus particle assembly.

    Article  CAS  PubMed  Google Scholar 

  107. Shavinskaya, A., Boulant, S., Penin, F., McLauchlan, J. & Bartenschlager, R. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J. Biol. Chem. 282, 37158–37169 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Menzel, N. et al. MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles. PLoS Pathog. 8, e1002829 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Herker, E. et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nature Med. 16, 1295–1298 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Neveu, G. et al. Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly. PLoS Pathog. 8, e1002845 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Counihan, N. A., Rawlinson, S. M. & Lindenbach, B. D. Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog. 7, e1002302 (2011). This work involves live cell imaging of functional core protein in virus-producing cells and shows that the interaction between NS2 and NS3-4A is important for recruiting the core protein from LDs into virus assembly.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Coller, K. E. et al. Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog. 8, e1002466 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Dubuisson, J. et al. Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J. Virol. 68, 6147–6160 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Michalak, J. P. et al. Characterization of truncated forms of hepatitis C virus glycoproteins. J. Gen. Virol. 78, 2299–2306 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Brazzoli, M. et al. Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells. Virology 332, 438–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Flint, M. et al. Functional characterization of intracellular and secreted forms of a truncated hepatitis C virus E2 glycoprotein. J. Virol. 74, 702–709 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Flint, M. et al. Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J. Virol. 73, 6235–6244 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Heile, J. M. et al. Evaluation of hepatitis C virus glycoprotein E2 for vaccine design: an endoplasmic reticulum-retained recombinant protein is superior to secreted recombinant protein and DNA-based vaccine candidates. J. Virol. 74, 6885–6892 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Whidby, J. et al. Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J. Virol. 83, 11078–11089 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Appel, N. et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 4, e1000035 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Masaki, T. et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J. Virol. 82, 7964–7976 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Camus, G. et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J. Biol. Chem. 288, 9915–9923 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kim, S., Welsch, C., Yi, M. & Lemon, S. M. Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J. Virol. 85, 6645–6656 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tellinghuisen, T. L., Foss, K. L. & Treadaway, J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog. 4, e1000032 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Benga, W. J. et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51, 43–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Evans, M. J., Rice, C. M. & Goff, S. P. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc. Natl Acad. Sci. USA 101, 13038–13043 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Backes, P. et al. Role of annexin A2 in the production of infectious hepatitis C virus particles. J. Virol. 84, 5775–5789 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Jirasko, V. et al. Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. PLoS Pathog. 6, e1001233 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Popescu, C. I. et al. NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog. 7, e1001278 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Gentzsch, J. et al. Hepatitis C virus p7 is critical for capsid assembly and envelopment. PLoS Pathog. 9, e1003355 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Moradpour, D. & Penin, F. Hepatitis C virus proteins: from structure to function. Curr. Top. Microbiol. Immunol. 369, 113–142 (2013).

    CAS  PubMed  Google Scholar 

  132. Jirasko, V. et al. Structural and functional characterization of non-structural protein 2 for its role in hepatitis C virus assembly. J. Biol. Chem. 283, 28546–28562 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J. & Rice, C. M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol. 81, 8374–8383 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Beran, R. K., Lindenbach, B. D. & Pyle, A. M. The NS4A protein of hepatitis C virus promotes RNA-coupled ATP hydrolysis by the NS3 helicase. J. Virol. 83, 3268–3275 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Kuang, W. F. et al. Hepatitis C virus NS3 RNA helicase activity is modulated by the two domains of NS3 and NS4A. Biochem. Biophys. Res. Commun. 317, 211–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Phan, T., Kohlway, A., Dimberu, P., Pyle, A. M. & Lindenbach, B. D. The acidic domain of hepatitis C virus NS4A contributes to RNA replication and virus particle assembly. J. Virol. 85, 1193–1204 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Pietschmann, T. et al. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog. 5, e1000475 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Ma, Y., Yates, J., Liang, Y., Lemon, S. M. & Yi, M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J. Virol. 82, 7624–7639 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Phan, T., Beran, R. K., Peters, C., Lorenz, I. C. & Lindenbach, B. D. Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J. Virol. 83, 8379–8395 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Jones, D. M., Atoom, A. M., Zhang, X., Kottilil, S. & Russell, R. S. A genetic interaction between the core and NS3 proteins of hepatitis C virus is essential for production of infectious virus. J. Virol. 85, 12351–12361 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Welsch, S., Muller, B. & Krausslich, H. G. More than one door — budding of enveloped viruses through cellular membranes. FEBS Lett. 581, 2089–2097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ariumi, Y. et al. The ESCRT system is required for hepatitis C virus production. PLoS ONE 6, e14517 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Corless, L., Crump, C. M., Griffin, S. D. & Harris, M. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J. Gen. Virol. 91, 362–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Tamai, K. et al. Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology 422, 377–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Lai, C. K., Jeng, K. S., Machida, K. & Lai, M. M. Hepatitis C virus egress and release depend on endosomal trafficking of core protein. J. Virol. 84, 11590–11598 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Huang, H. et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl Acad. Sci. USA 104, 5848–5853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jiang, J. & Luo, G. Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J. Virol. 83, 12680–12691 (2009). This study demonstrates that apoE, but not apoB, is essential for HCV particle assembly. The association of NS5A with HCVcc particles was later called into question (see reference 31).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Nahmias, Y. et al. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47, 1437–1445 (2008).

    Article  PubMed  CAS  Google Scholar 

  149. Da Costa, D. et al. Reconstitution of the entire hepatitis C virus life cycle in nonhepatic cells. J. Virol. 86, 11919–11925 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Long, G. et al. Mouse hepatic cells support assembly of infectious hepatitis C virus particles. Gastroenterology 141, 1057–1066 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Clarke, D. et al. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem. 281, 37057–37068 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Luik, P. et al. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc. Natl Acad. Sci. USA 106, 12712–12716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wozniak, A. L. et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog. 6, e1001087 (2010). This research defines two essential roles for p7 and shows that the ion channel activity of this protein is required during virus egress.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Ouyang, B. et al. Unusual architecture of the p7 channel from hepatitis C virus. Nature 498, 521–525 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. de la Fuente, C., Goodman, Z. & Rice, C. M. Genetic and functional characterization of the N-terminal region of the hepatitis C virus NS2 protein. J. Virol. 87, 4130–4145 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Parhofer, K. G., Hugh, P., Barrett, R., Bier, D. M. & Schonfeld, G. Determination of kinetic parameters of apolipoprotein B metabolism using amino acids labeled with stable isotopes. J. Lipid Res. 32, 1311–1323 (1991).

    CAS  PubMed  Google Scholar 

  158. Lund-Katz, S. & Phillips, M. C. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell. Biochem. 51, 183–227 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Olofsson, S. O., Stillemark-Billton, P. & Asp, L. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc. Med. 10, 338–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Lehner, R., Lian, J. & Quiroga, A. D. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler Thromb. Vasc. Biol. 32, 1087–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Cunliffe, H. R. & Rebers, P. A. The purification and concentration of hog cholera virus. Can. J. Comp. Med. 32, 486–492 (1968).

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Laude, H. Nonarbo-Togaviridae: comparative hydrodynamic properties of the Pestivirus genus. Arch. Virol. 62, 347–352 (1979).

    Article  CAS  PubMed  Google Scholar 

  163. Kuhn, R. J. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 629–650 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  164. Hobman, T. C. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 687–711 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  165. Snijder, E. J. & Kikkert, M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 859–879 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  166. Goff, S. P. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1424–1473 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  167. Herden, C., Briese, T., Lipkin, W. I. & Richt, J. A. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1124–1150 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  168. Lastra, R. & Acosta, J. M. Purification and partial characterization of maize mosaic virus. Intervirology 11, 215–220 (1979).

    Article  CAS  PubMed  Google Scholar 

  169. Neurath, A. R., Wiktor, T. J. & Koprowski, H. Density gradient centrifugation studies on rabies virus. J. Bacteriol. 92, 102–106 (1966).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Elliott, R. M. & Schmaljohn, C. S. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1244–1282 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  171. Stryer, L. Biochemistry (W. H. Freeman and Company, 1995).

    Google Scholar 

Download references

Acknowledgements

The authors thank M. T. Catanese and Y. Modis for sharing data prior to publication and for helpful comments on the manuscript. B.D.L. is supported by grants from the US Public Health Service, National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID; grants AI076259, AI087925 and AI089826). C.M.R. is supported by NIAID (grants AI099284, AI072613, AI075099 and AI090055), the Office of the Director through the NIH Roadmap for Medical Research (grant DK085713), the National Cancer Institute (grant CA057973), The Rockefeller University Center for Clinical and Translational Science (grant UL1RR024143), the Center for Basic and Translational Research on Disorders of the Digestive System through the generosity of the Leona M. and Harry B. Helmsley Charitable Trust, the Greenberg Medical Research Institute and the Starr Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brett D. Lindenbach or Charles M. Rice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Type I interferon

A class of cytokines that is induced by viral infection and interferes with viral replication. These cytokines include multiple interferon-α proteins, encoded by separate genes, as well as a single interferon-β.

Subgenomic replicons

Genetic units that are capable of autonomous replication in a suitable host cell. A hepatitis C virus subgenomic replicon is a viral RNA that is less than genome length but still capable of autonomous replication.

Pleiomorphic

Heterogeneous in morphology, form or shape.

Buoyant density

A physical characteristic of an object, describing its tendency to float above liquids that have greater densities than the object. Thus, at equilibrium, the buoyant density of an object is equal to the density of the surrounding liquid. Buoyant densities are determined by using isopycnic ultracentrifugation.

Tetraspanin

A member of a family of related cell surface proteins that have four membrane- spanning domains. Tetraspanins contain a small amino-terminal extracellular domain and a large carboxy-terminal extracellular domain that contains a conserved motif of disulphide-bonded cysteine residues.

Tight junctions

Specialized plasma membrane compartments between two adjacent cells. These junctions are impermeable to small molecules and charged ions, thereby physically separating the apical and basoateral surfaces of cells. Also known as the zonula occludens.

Secretory pathway

A series of subcellular membrane-bound compartments that traffic proteins and small molecules from the inside to the outside of cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindenbach, B., Rice, C. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 11, 688–700 (2013). https://doi.org/10.1038/nrmicro3098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing