Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

A problem of persistence: still more questions than answers?

Abstract

The current antibiotic resistance crisis has led to increased pressure to prioritize strategies to tackle the issue, with a strong focus being placed on the development of novel antimicrobials. However, one major obstacle that is often overlooked is persister cells, which are refractory to antibiotic treatment. Tackling persistence is a challenge because these cell types are extremely difficult to study and, consequently, little is known about their physiology and the factors that lead to their emergence. Here, four experts contemplate the main physiological features that define persistence and the implications of persistence for antibiotic treatment regimens, and consider what the study of bacterial persistence has taught us about the heterogeneity of bacterial populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  2. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  Google Scholar 

  3. Rotem, E. et al. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc. Natl Acad. Sci. USA 107, 12541–12546 (2010).

    Article  CAS  Google Scholar 

  4. Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011).

    Article  CAS  Google Scholar 

  5. Amato, S. M., Orman, M. A. & Brynildsen, M. P. Metabolic control of persister formation in Escherichia coli. Mol. Cell 50, 475–487 (2013).

    Article  CAS  Google Scholar 

  6. Gerdes, K. & Maisonneuve, E. Bacterial persistence and toxin-antitoxin loci. Annu. Rev. Microbiol. 66, 103–123 (2012).

    Article  CAS  Google Scholar 

  7. Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

    Article  CAS  Google Scholar 

  8. Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339, 91–95 (2013).

    Article  CAS  Google Scholar 

  9. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  Google Scholar 

  10. Dwyer, D. J., Kohanski, M. A., Hayete, B. & Collins, J. J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91 (2007).

    Article  Google Scholar 

  11. Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37, 311–320 (2010).

    Article  CAS  Google Scholar 

  12. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R. & Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216 (2013).

    Article  CAS  Google Scholar 

  13. Liu, Y. & Imlay, J. A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213 (2013).

    Article  CAS  Google Scholar 

  14. Mahoney, T. F. & Silhavy, T. J. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J. Bacteriol. 195, 1869–1874 (2013).

    Article  CAS  Google Scholar 

  15. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

    Article  CAS  Google Scholar 

  16. Orman, M. A. & Brynildsen, M. P. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob. Agents Chemother. 57, 3230–3239 (2013).

    Article  CAS  Google Scholar 

  17. Conan Doyle, A. The Adventures of Sherlock Holmes (George Newnes Ltd, 1892).

    Google Scholar 

  18. Vega, N. M., Allison, K. R., Khalil, A. S. & Collins, J. J. Signaling-mediated bacterial persister formation. Nature Chem. Biol. 8, 431–433 (2012).

    Article  CAS  Google Scholar 

  19. Wu, Y., Vulić, M., Keren, I. & Lewis, K. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56, 4922–4926 (2012).

    Article  CAS  Google Scholar 

  20. Dörr, T., Vulić, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).

    Article  Google Scholar 

  21. Dörr, T., Lewis, K. & Vulić, M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5, e1000760 (2009).

    Article  Google Scholar 

  22. Johnson, P. J. & Levin, B. R. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 9, e1003123 (2013).

    Article  CAS  Google Scholar 

  23. Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol. 192, 6191–6199 (2010).

    Article  CAS  Google Scholar 

  24. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    Article  CAS  Google Scholar 

  25. Pearl, S., Gabay, C., Kishony, R., Oppenheim, A. & Balaban, N. Q. Nongenetic individuality in the host–phage interaction. PLoS Biol. 6, e120 (2008).

    Article  Google Scholar 

  26. Wexselblatt, E. et al. Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog. 8, e1002925 (2012).

    Article  CAS  Google Scholar 

  27. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  Google Scholar 

  28. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.G. thanks E. Maisonneuve for thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalie Q. Balaban, Kenn Gerdes, Kim Lewis or John D. McKinney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaban, N., Gerdes, K., Lewis, K. et al. A problem of persistence: still more questions than answers?. Nat Rev Microbiol 11, 587–591 (2013). https://doi.org/10.1038/nrmicro3076

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3076

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology