The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread

Key Points

  • Recent data have shown that many pathogens are dependent on clathrin and actin for their entry into host cells.

  • The study of pathogen entry has revealed the flexibility of clathrin to accommodate both large and small cargo.

  • Different pathogens use different adaptors to fulfil different requirements during the pathogen replication cycle.

  • It has recently emerged that clathrin functions as a scaffold for actin assembly, in the context of both pathogen infection and cell biology.

  • The use of endocytic proteins in bacterial infection is conserved, and the proteins used are similar to those used in cell–cell adhesion.

  • There are several unusual examples of the manipulation of clathrin by pathogens during egress, budding and release.

Abstract

The role of clathrin in pathogen entry has received much attention and has highlighted the adaptability of clathrin during internalization. Recent studies have now uncovered additional roles for clathrin and have put the spotlight on its role in pathogen spread. Here, we discuss the manipulation of clathrin by pathogens, with specific attention to the processes that occur at the plasma membrane. In the majority of cases, both clathrin and the actin cytoskeleton are hijacked, so we also examine the interplay between these two systems and their role during pathogen internalization, egress and spread.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stages of mammalian clathrin-mediated endocytosis.
Figure 2: The conserved use of endocytic proteins by Listeria monocytogenes and enteropathogenic Escherichia coli.
Figure 3: Platforms for cytoskeletal rearrangements by vaccinia virus and enteropathogenic Escherichia coli.
Figure 4: Potential roles for the endocytic machinery during retroviral budding.

References

  1. 1

    McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 12, 517–533 (2011).

    CAS  Google Scholar 

  2. 2

    Traub, L. M. Clathrin couture: fashioning distinctive membrane coats at the cell surface. PLoS Biol. 7, e1000192 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Brodsky, F. M. Living with clathrin: its role in intracellular membrane traffic. Science 242, 1396–1402 (1988).

    CAS  PubMed  Google Scholar 

  4. 4

    Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    CAS  Google Scholar 

  5. 5

    Owen, D. J., Collins, B. M. & Evans, P. R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20, 153–191 (2004).

    CAS  PubMed  Google Scholar 

  6. 6

    Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    CAS  PubMed  Google Scholar 

  7. 7

    Dell'Angelica, E. C., Klumperman, J., Stoorvogel, W. & Bonifacino, J. S. Association of the AP-3 adaptor complex with clathrin. Science 280, 431–434 (1998).

    CAS  PubMed  Google Scholar 

  8. 8

    Kelly, B. T. & Owen, D. J. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol. 23, 404–412 (2011).

    CAS  PubMed  Google Scholar 

  9. 9

    Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. & Kornfeld, S. Localization of the signal for rapid internalization of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor to amino acids 24–29 of the cytoplasmic tail. J. Biol. Chem. 266, 5682–5688 (1991).

    CAS  PubMed  Google Scholar 

  10. 10

    Bresnahan, P. A. et al. A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr. Biol. 8, 1235–1238 (1998).

    CAS  PubMed  Google Scholar 

  11. 11

    Pond, L. et al. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J. Biol. Chem. 270, 19989–19997 (1995).

    CAS  PubMed  Google Scholar 

  12. 12

    Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012). Single-molecule live-cell imaging demonstrating that the recruitment of AP2 and clathrin defines the initial steps of endocytosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010). A demonstration of the importance of rim complex proteins in the formation of clathrin-coated vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    McNiven, M. A. & Thompson, H. M. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 313, 1591–1594 (2006).

    CAS  PubMed  Google Scholar 

  15. 15

    Traub, L. M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744, 415–437 (2005).

    CAS  PubMed  Google Scholar 

  16. 16

    Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    CAS  Google Scholar 

  17. 17

    Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 7, 404–414 (2006).

    CAS  Google Scholar 

  18. 18

    Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011). Comprehensive live-cell total internal reflection fluorescence (TIRF) imaging analyses of the temporal recruitment of endocytic proteins during vesicle formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Sirotkin, V. Cell biology: actin keeps endocytosis on a short leash. Curr. Biol. 21, R552–R554 (2011).

    CAS  PubMed  Google Scholar 

  21. 21

    Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. Role of lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res. 312, 4036–4048 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  23. 23

    Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Batchelder, E. M. & Yarar, D. Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol. Biol. Cell 21, 3070–3079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nature Cell Biol. 13, 1124–1131 (2011). A study that resolves the controversy of the role of actin during mammalian endocytosis.

    CAS  PubMed  Google Scholar 

  26. 26

    Liu, A. P., Loerke, D., Schmid, S. L. & Danuser, G. Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys. J. 97, 1038–1047 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009). The first detailed analysis of the dynamics and behaviour of clathrin plaques.

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Gauthier, N. C., Masters, T. A. & Sheetz, M. P. Mechanical feedback between membrane tension and dynamics. Trends Cell Biol. 22, 527–535 (2012).

    CAS  PubMed  Google Scholar 

  29. 29

    Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nature Cell Biol. 11, 1039–1042 (2009).

    CAS  PubMed  Google Scholar 

  30. 30

    Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nature Rev. Mol. Cell Biol. 11, 237–251 (2010).

    CAS  Google Scholar 

  31. 31

    Benesch, S. et al. N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J. Cell Sci. 118, 3103–3115 (2005).

    CAS  PubMed  Google Scholar 

  32. 32

    Innocenti, M. et al. Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biol. 7, 969–976 (2005).

    CAS  PubMed  Google Scholar 

  33. 33

    Merrifield, C. J. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol. 14, 352–358 (2004).

    CAS  PubMed  Google Scholar 

  34. 34

    Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nature Rev. Mol. Cell Biol. 13, 75–88 (2012).

    CAS  Google Scholar 

  35. 35

    Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–560 (2011).

    CAS  PubMed  Google Scholar 

  36. 36

    Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    Higgs, H. Branching out: cortactin stabilizes actin networks generated by the Arp2/3 complex. Trends Biochem. Sci. 26, 219 (2001).

    CAS  PubMed  Google Scholar 

  38. 38

    Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol. 3, 259–266 (2001).

    CAS  PubMed  Google Scholar 

  39. 39

    McNiven, M. A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol. 151, 187–198 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Engqvist-Goldstein, A. E., Kessels, M. M., Chopra, V. S., Hayden, M. R. & Drubin, D. G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Wilbur, J. D. et al. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain. J. Biol. Chem. 283, 32870–32879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Le Clainche, C. et al. A Hip1R-cortactin complex negatively regulates actin assembly associated with endocytosis. EMBO J. 26, 1199–1210 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Lai, F. P. et al. Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol. Biol. Cell 20, 3209–3223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Chetrit, D., Ziv, N. & Ehrlich, M. Dab2 regulates clathrin assembly and cell spreading. Biochem. J. 418, 701–715 (2009).

    CAS  PubMed  Google Scholar 

  46. 46

    Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175–1187 (2008).

    CAS  PubMed  Google Scholar 

  47. 47

    Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    CAS  PubMed  Google Scholar 

  48. 48

    Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin-γ-adaptin-coated domains on endosomal tubules. J. Cell Biol. 141, 611–623 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    CAS  PubMed  Google Scholar 

  53. 53

    Repass, S. L., Brady, R. J. & O'Halloran, T. J. Dictyostelium Hip1r contributes to spore shape and requires epsin for phosphorylation and localization. J. Cell Sci. 120, 3977–3988 (2007).

    CAS  PubMed  Google Scholar 

  54. 54

    Brady, R. J., Damer, C. K., Heuser, J. E. & O'Halloran, T. J. Regulation of Hip1r by epsin controls the temporal and spatial coupling of actin filaments to clathrin-coated pits. J. Cell Sci. 123, 3652–3661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Davey, N. E., Trave, G. & Gibson, T. J. How viruses hijack cell regulation. Trends Biochem. Sci. 36, 159–169 (2011).

    CAS  PubMed  Google Scholar 

  56. 56

    Dodding, M. P. & Way, M. Coupling viruses to dynein and kinesin-1. EMBO J. 30, 3527–3539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Rahman, M. M. & McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nature Rev. Microbiol. 9, 291–306 (2011).

    CAS  Google Scholar 

  58. 58

    Taylor, M. P., Koyuncu, O. O. & Enquist, L. W. Subversion of the actin cytoskeleton during viral infection. Nature Rev. Microbiol. 9, 427–439 (2011).

    CAS  Google Scholar 

  59. 59

    Cossart, P. & Veiga, E. Non-classical use of clathrin during bacterial infections. J. Microsc. 231, 524–528 (2008).

    CAS  PubMed  Google Scholar 

  60. 60

    Gruenberg, J. Viruses and endosome membrane dynamics. Curr. Opin. Cell Biol. 21, 582–588 (2009).

    CAS  PubMed  Google Scholar 

  61. 61

    Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    CAS  PubMed  Google Scholar 

  62. 62

    Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).

    CAS  PubMed  Google Scholar 

  63. 63

    Schelhaas, M. Come in and take your coat off – how host cells provide endocytosis for virus entry. Cell. Microbiol. 12, 1378–1388 (2010).

    CAS  PubMed  Google Scholar 

  64. 64

    Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nature Rev. Mol. Cell Biol. 9, 639–649 (2008).

    CAS  Google Scholar 

  65. 65

    Swanson, J. A. & Watts, C. Macropinocytosis. Trends Cell Biol. 5, 424–428 (1995).

    CAS  PubMed  Google Scholar 

  66. 66

    Cheng, Y., Boll, W., Kirchhausen, T., Harrison, S. C. & Walz, T. Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J. Mol. Biol. 365, 892–899 (2007).

    CAS  PubMed  Google Scholar 

  67. 67

    Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    CAS  PubMed  Google Scholar 

  68. 68

    McMahon, H. T. Endocytosis: an assembly protein for clathrin cages. Curr. Biol. 9, R332–R335 (1999).

    CAS  PubMed  Google Scholar 

  69. 69

    Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    CAS  PubMed  Google Scholar 

  70. 70

    Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 5, e1000394 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Cureton, D. K., Massol, R. H., Whelan, S. P. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010). A seminal study showing the role of actin and the flexibility of clathrin during pathogen internalization.

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Johannsdottir, H. K., Mancini, R., Kartenbeck, J., Amato, L. & Helenius, A. Host cell factors and functions involved in vesicular stomatitis virus entry. J. Virol. 83, 440–453 (2009).

    CAS  PubMed  Google Scholar 

  73. 73

    Bonazzi, M., Veiga, E., Pizarro-Cerda, J. & Cossart, P. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cell. Microbiol. 10, 2208–2222 (2008).

    CAS  PubMed  Google Scholar 

  74. 74

    Moreno-Ruiz, E. et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11, 1179–1189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Veiga, E. et al. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe 2, 340–351 (2007). A comprehensive investigation of the recruitment and role of clathrin during bacterial internalization.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Pizarro-Cerda, J., Bonazzi, M. & Cossart, P. Clathrin-mediated endocytosis: what works for small, also works for big. Bioessays 32, 496–504 (2010).

    CAS  PubMed  Google Scholar 

  77. 77

    Brodsky, F. M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol. 28, 309–336 (2012).

    CAS  PubMed  Google Scholar 

  78. 78

    Campellone, K. G. Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J. 277, 2390–2402 (2010).

    CAS  PubMed  Google Scholar 

  79. 79

    Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997).

    CAS  PubMed  Google Scholar 

  80. 80

    Phillips, N., Hayward, R. D. & Koronakis, V. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nature Cell Biol. 6, 618–625 (2004).

    CAS  PubMed  Google Scholar 

  81. 81

    Swimm, A., Bommarius, B., Reeves, P., Sherman, M. & Kalman, D. Complex kinase requirements for EPEC pedestal formation. Nature Cell Biol 6, 795; author reply 795–796 (2004).

    CAS  PubMed  Google Scholar 

  82. 82

    Campellone, K. G. & Leong, J. M. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol. Microbiol. 56, 416–432 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001).

    CAS  PubMed  Google Scholar 

  84. 84

    Kenny, B. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol. 31, 1229–1241 (1999).

    CAS  PubMed  Google Scholar 

  85. 85

    Rosenshine, I. et al. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15, 2613–2624 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    CAS  PubMed  Google Scholar 

  87. 87

    Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Unsworth, K. E. et al. Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell. Microbiol. 9, 438–449 (2007).

    CAS  PubMed  Google Scholar 

  89. 89

    Lin, A. E., Benmerah, A. & Guttman, J. A. Eps15 and epsin1 are crucial for enteropathogenic Escherichia coli pedestal formation despite the absence of adaptor protein 2. J. Infect. Dis. 204, 695–703 (2011).

    CAS  PubMed  Google Scholar 

  90. 90

    Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    CAS  PubMed  Google Scholar 

  91. 91

    Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol. 7, 894–900 (2005). The first study to demonstrate that the endocytic machinery is key to bacterial internalization.

    CAS  PubMed  Google Scholar 

  92. 92

    Guttman, J. A., Lin, A. E., Veiga, E., Cossart, P. & Finlay, B. B. Role for CD2AP and other endocytosis-associated proteins in enteropathogenic Escherichia coli pedestal formation. Infect. Immun. 78, 3316–3322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Lee, E. & De Camilli, P. Dynamin at actin tails. Proc. Natl Acad. Sci. USA 99, 161–166 (2002).

    CAS  PubMed  Google Scholar 

  94. 94

    Bonazzi, M. et al. A common clathrin-mediated machinery co-ordinates cell-cell adhesion and bacterial internalization. Traffic 13, 1653–1666 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Bonazzi, M. et al. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J. Cell Biol. 195, 525–536 (2011). Work highlighting the importance of clathrin heavy chain phosphorylation in stabilizing the clathrin coat and creating a platform for actin assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Beattie, E. C., Howe, C. L., Wilde, A., Brodsky, F. M. & Mobley, W. C. NGF signals through TrkA to increase clathrin at the plasma membrane and enhance clathrin-mediated membrane trafficking. J. Neurosci. 20, 7325–7333 (2000).

    CAS  PubMed  Google Scholar 

  97. 97

    Wilde, A. et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677–687 (1999).

    CAS  PubMed  Google Scholar 

  98. 98

    Yonemura, S. Cadherin-actin interactions at adherens junctions. Curr. Opin. Cell Biol. 23, 515–522 (2011).

    CAS  PubMed  Google Scholar 

  99. 99

    Brasch, J., Harrison, O. J., Honig, B. & Shapiro, L. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol. 22, 299–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Lecuit, M. et al. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18, 3956–3963 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Bonazzi, M. & Cossart, P. Impenetrable barriers or entry portals? The role of cell–cell adhesion during infection. J. Cell Biol. 195, 349–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Keyel, P. A. et al. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell 17, 4300–4317 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Maurer, M. E. & Cooper, J. A. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 119, 4235–4246 (2006).

    CAS  PubMed  Google Scholar 

  104. 104

    Mishra, S. K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Traub, L. M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol. 163, 203–208 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Teckchandani, A., Mulkearns, E. E., Randolph, T. W., Toida, N. & Cooper, J. A. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis. Mol. Biol. Cell 23, 2905–2916 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Mulkearns, E. E. & Cooper, J. A. FCH domain only-2 organizes clathrin-coated structures and interacts with Disabled-2 for low-density lipoprotein receptor endocytosis. Mol. Biol. Cell 23, 1330–1342 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    CAS  PubMed  Google Scholar 

  110. 110

    Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002).

    CAS  PubMed  Google Scholar 

  111. 111

    Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407 (1998).

    CAS  PubMed  Google Scholar 

  112. 112

    Wendland, B. Epsins: adaptors in endocytosis? Nature Rev. Mol. Cell Biol. 3, 971–977 (2002).

    CAS  Google Scholar 

  113. 113

    Haglund, C. M. & Welch, M. D. Pathogens and polymers: microbe–host interactions illuminate the cytoskeleton. J. Cell Biol. 195, 7–17 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Zhang, F., Zang, T., Wilson, S. J., Johnson, M. C. & Bieniasz, P. D. Clathrin facilitates the morphogenesis of retrovirus particles. PLoS Pathog. 7, e1002119 (2011). An analysis of the role of clathrin during retroviral assembly and budding.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Huang, C., Chang, S. C., Yang, H. C., Chien, C. L. & Chang, M. F. Clathrin-mediated post-Golgi membrane trafficking in the morphogenesis of hepatitis delta virus. J. Virol. 83, 12314–12324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Huang, C., Chang, S. C., Yu, I. C., Tsay, Y. G. & Chang, M. F. Large hepatitis delta antigen is a novel clathrin adaptor-like protein. J. Virol. 81, 5985–5994 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Wang, Y. C., Huang, C. R., Chao, M. & Lo, S. J. The C-terminal sequence of the large hepatitis delta antigen is variable but retains the ability to bind clathrin. Virol. J. 6, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  118. 118

    Fukumatsu, M. et al. Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host Microbe 11, 325–336 (2012).

    CAS  PubMed  Google Scholar 

  119. 119

    Humphries, A. C. et al. Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12, 346–359 (2012). An unexpected role for clathrin-mediated promotion of actin assembly during vaccinia virus egress.

    CAS  PubMed  Google Scholar 

  120. 120

    May, R. C. & Machesky, L. M. Plagiarism and pathogenesis: common themes in actin remodeling. Dev. Cell 1, 317–318 (2001).

    CAS  PubMed  Google Scholar 

  121. 121

    Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    CAS  PubMed  Google Scholar 

  122. 122

    Schmelz, M. et al. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J. Virol. 68, 130–147 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Tooze, J., Hollinshead, M., Reis, B., Radsak, K. & Kern, H. Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur. J. Cell Biol. 60, 163–178 (1993).

    CAS  PubMed  Google Scholar 

  124. 124

    Roberts, K. L. & Smith, G. L. Vaccinia virus morphogenesis and dissemination. Trends Microbiol. 16, 472–479 (2008).

    CAS  PubMed  Google Scholar 

  125. 125

    Dodding, M. P., Mitter, R., Humphries, A. C. & Way, M. A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome. EMBO J. 30, 4523–4538 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Newsome, T. P., Scaplehorn, N. & Way, M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124–129 (2004).

    CAS  PubMed  Google Scholar 

  127. 127

    Rietdorf, J. et al. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nature Cell Biol. 3, 992–1000 (2001).

    CAS  PubMed  Google Scholar 

  128. 128

    Hollinshead, M. et al. Vaccinia virus utilizes microtubules for movement to the cell surface. J. Cell Biol. 154, 389–402 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Geada, M. M., Galindo, I., Lorenzo, M. M., Perdiguero, B. & Blasco, R. Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J. Gen. Virol. 82, 2747–2760 (2001).

    CAS  PubMed  Google Scholar 

  130. 130

    Ward, B. M. & Moss, B. Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. J. Virol. 78, 2486–2493 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    CAS  PubMed  Google Scholar 

  132. 132

    Scaplehorn, N. et al. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12, 740–745 (2002).

    CAS  PubMed  Google Scholar 

  133. 133

    Reeves, P. M. et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nature Med. 11, 731–739 (2005).

    CAS  PubMed  Google Scholar 

  134. 134

    Newsome, T. P., Weisswange, I., Frischknecht, F. & Way, M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell. Microbiol. 8, 233–241 (2006).

    CAS  PubMed  Google Scholar 

  135. 135

    Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    CAS  PubMed  Google Scholar 

  136. 136

    Weisswange, I., Newsome, T. P., Schleich, S. & Way, M. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458, 87–91 (2009).

    CAS  PubMed  Google Scholar 

  137. 137

    Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G. L. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327, 873–876 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    CAS  PubMed  Google Scholar 

  139. 139

    Donnelly, S. K., Weisswange, I., Zettl, M. & Way, M. WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr. Biol. 23, 999–1006 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Serio, A. W., Jeng, R. L., Haglund, C. M., Reed, S. C. & Welch, M. D. Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 7, 388–398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Horsington, J. et al. A36-dependent actin filament nucleation promotes release of vaccinia virus. PLoS Pathog. 9, e1003239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Husain, M. & Moss, B. Intracellular trafficking of a palmitoylated membrane-associated protein component of enveloped vaccinia virus. J. Virol. 77, 9008–9019 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Husain, M. & Moss, B. Role of receptor-mediated endocytosis in the formation of vaccinia virus extracellular enveloped particles. J. Virol. 79, 4080–4089 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Van Vliet, K. et al. Poxvirus proteomics and virus-host protein interactions. Microbiol. Mol. Biol. Rev. 73, 730–749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Blasco, R., Sisler, J. R. & Moss, B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 67, 3319–3325 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Katz, E., Ward, B. M., Weisberg, A. S. & Moss, B. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J. Virol. 77, 12266–12275 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Katz, E., Wolffe, E. & Moss, B. Identification of second-site mutations that enhance release and spread of vaccinia virus. J. Virol. 76, 11637–11644 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Payne, L. G. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 50, 89–100 (1980).

    CAS  PubMed  Google Scholar 

  149. 149

    Blasco, R. & Moss, B. Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J. Virol. 66, 4170–4179 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Smith, G. L. & Law, M. The exit of vaccinia virus from infected cells. Virus Res. 106, 189–197 (2004).

    CAS  PubMed  Google Scholar 

  151. 151

    Delchambre, M. et al. The GAG precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO J. 8, 2653–2660 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Gheysen, D. et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59, 103–112 (1989).

    CAS  PubMed  Google Scholar 

  153. 153

    Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    CAS  PubMed  Google Scholar 

  154. 154

    Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    CAS  Google Scholar 

  155. 155

    Puffer, B. A., Watkins, S. C. & Montelaro, R. C. Equine infectious anemia virus Gag polyprotein late domain specifically recruits cellular AP-2 adapter protein complexes during virion assembly. J. Virol. 72, 10218–10221 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Batonick, M. et al. Interaction of HIV-1 Gag with the clathrin-associated adaptor AP-2. Virology 342, 190–200 (2005).

    CAS  PubMed  Google Scholar 

  157. 157

    Camus, G. et al. The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol. Biol. Cell 18, 3193–3203 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Chen, C., Weisz, O. A., Stolz, D. B., Watkins, S. C. & Montelaro, R. C. Differential effects of actin cytoskeleton dynamics on equine infectious anemia virus particle production. J. Virol. 78, 882–891 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Gladnikoff, M., Shimoni, E., Gov, N. S. & Rousso, I. Retroviral assembly and budding occur through an actin-driven mechanism. Biophys. J. 97, 2419–2428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Jolly, C., Mitar, I. & Sattentau, Q. J. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J. Virol. 81, 5547–5560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Sasaki, H. et al. Myosin–actin interaction plays an important role in human immunodeficiency virus type 1 release from host cells. Proc. Natl Acad. Sci. USA 92, 2026–2030 (1995).

    CAS  PubMed  Google Scholar 

  162. 162

    Dube, M. et al. Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLoS Pathog. 6, e1000856 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. 163

    Kueck, T. & Neil, S. J. A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction. PLoS Pathog. 8, e1002609 (2012).

    PubMed  PubMed Central  Google Scholar 

  164. 164

    Zhang, F. et al. SIV Nef proteins recruit the AP-2 complex to antagonize Tetherin and facilitate virion release. PLoS Pathog. 7, e1002039 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Martin-Serrano, J. & Neil, S. J. Host factors involved in retroviral budding and release. Nature Rev. Microbiol. 9, 519–531 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Way laboratory for comments on the text.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Way.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Humphries, A., Way, M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 11, 551–560 (2013). https://doi.org/10.1038/nrmicro3072

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing