Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uncovering the mysteries of hantavirus infections

Key Points

  • Hantaviruses are negative-sense single-stranded RNA viruses that infect many species of rodents, shrews, moles and bats.

  • Hantaviruses primarily replicate in the endothelium and might use integrins to enter cells. Following entry, the virus synthesizes viral mRNA to produce viral proteins and replicate the genome (comprising small, medium and large segments), although the exact details of these processes remain unclear. The viral genome is encapsided by nucleocapsid protein to form ribonucleoproteins, which interact with viral glycoprotein to form virus particles.

  • The three segments of viral RNA encode nucleocapsid protein, glycoprotein and RNA-dependent RNA polymerase.

  • Infection of reservoir hosts is asymptomatic, possibly owing to immunosuppression.

  • Infection of humans causes either haemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome.

  • Disease pathology is characterized by increased permeability of the endothelial cells lining capillaries and is also thought to be mediated by enhanced immune responses, such as increased production of cytokines and expansion of cytotoxic T cells.

Abstract

Hantaviruses are negative-sense single-stranded RNA viruses that infect many species of rodents, shrews, moles and bats. Infection in these reservoir hosts is almost asymptomatic, but some rodent-borne hantaviruses also infect humans, causing either haemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS). In this Review, we discuss the basic molecular properties and cell biology of hantaviruses and offer an overview of virus-induced pathology, in particular vascular leakage and immunopathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hantavirus particles, genes and proteins.
Figure 2: The life cycle and replication of hantaviruses.
Figure 3: Viral genome replication and transcription.
Figure 4: Vasculopathy in hantavirus-mediated diseases.

Similar content being viewed by others

References

  1. Vaheri, A., Mills, J. N., Spiropoulou, C. F. & Hjelle, B. in Oxford Textbook of Zoonoses: Biology, Clinical Practice and Public Health Control (eds Palmer, S. R., Lord Soulsby, Torgerson, P. R. & Brown, D. W. G.) 307–322 (Oxford Univ. Press, 2011).

    Google Scholar 

  2. Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).

    PubMed  Google Scholar 

  3. Hjelle, B. & Torres-Pérez, F. Hantaviruses in the Americas and their role as emerging pathogens. Viruses 2, 2259–2286 (2010).

    Google Scholar 

  4. Jonsson, C. B., Figueiredo, L. T. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. CDC. Hantavirus pulmonary syndrome in visitors to a national park – Yosemite Valley, California, 2012. Morb. Mortal. Wkly Rep. 61, 952 (2012).

  6. Schmaljohn, C. S. et al. Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science 227, 1041–1044 (1985). This pioneering article establishes hantaviruses as a separate genus in the Bunyaviridae family.

    CAS  PubMed  Google Scholar 

  7. Schmaljohn, C. S. & Nichol, S. T. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1741–1790 (Lippincott Williams & Wilkins, 2007).

    Google Scholar 

  8. Spiropoulou, C. F. in Bunyaviridae. Molecular and Cellular Biology (eds Plyusnin, A. & Elliott, R. M.) 41–60 (Caister Academic Press, 2011).

    Google Scholar 

  9. Hussein, I. T., Haseeb, A. Haque, A. & Mir, M. A. Recent advances in hantavirus molecular biology and disease. Adv. Appl. Microbiol. 74, 35–75 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jääskeläinen, K. M. et al. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-β promoter. J. Med. Virol. 79, 1527–1536 (2007).

    PubMed  Google Scholar 

  11. Virtanen, J. O., Jääskeläinen, K. M., Djupsjöbacka, J., Vaheri, A. & Plyusnin, A. Tula hantavirus NSs protein accumulates in the perinuclear area in infected and transfected cells. Arch. Virol. 155, 117–121 (2010).

    PubMed  Google Scholar 

  12. Rönnberg, T. S. et al. Searching for cellular partners of hantaviral nonstructural protein NSs: the yeast two-hybrid screening of mouse cDNA library and analysis of cellular interactome. PLoS ONE 7, e34307 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Van Knippenberg, I., Fragkoudis, R. & Elliott, R. M. The transient nature of Bunyamwera orthobunyavirus NSs protein expression: effects of increased stability of NSs protein on virus replication. PLoS ONE 8, e64137 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hepojoki, J., Strandin, T., Lankinen, H. & Vaheri, A. Hantavirus structure – molecular interactions behind the scene. J. Gen. Virol. 93, 1631–1644 (2012).

    CAS  PubMed  Google Scholar 

  15. Huiskonen, J. T. et al. Electron cryo-tomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J. Virol. 84, 4889–4897 (2010). This work obtains the first solved structure of the hantavirus spike.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006).

    CAS  PubMed  Google Scholar 

  17. Mackow, E. R. & Gavrilovskaya, I. N. Hantavirus regulation of endothelial cell functions. Thromb. Haemost. 102, 1030–1041 (2009). This report summarizes the concept that disrupted endothelial function is a crucial factor in disease mediated by hantaviruses.

    CAS  PubMed  Google Scholar 

  18. Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunol. Rev. 186, 141–163 (2002).

    CAS  PubMed  Google Scholar 

  19. Gavrilovskaya, I., Shepley, M., Shaw, R., Ginsberg, M. & Mackow E. β3 integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc. Natl Acad. Sci. USA 95, 7074–7079 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mackow, E. R. & Gavrilovskaya, I. N. Cellular receptors and hantavirus pathogenesis. Curr. Top. Microbiol. Immunol. 256, 91–115 (2001).

    CAS  PubMed  Google Scholar 

  21. Krautkrämer, E. & Zeier, M. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J. Virol. 82, 4257–4264 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Choi, Y. et al. A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology 381, 178–183 (2008).

    CAS  PubMed  Google Scholar 

  23. Jin, M. et al. Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology 294, 60–69 (2002).

    CAS  PubMed  Google Scholar 

  24. Ramanathan, H. N. & Jonsson, C. B. New and Old World hantaviruses differentially utilized host cytoskeletal components during their life cycles. Virology 374, 138–150 (2008).

    CAS  PubMed  Google Scholar 

  25. Lozach, P. Y. et al. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 7, 488–499 (2009).

    Google Scholar 

  26. Ramanathan, H. N. et al. Dynein-dependent transport of the Hantaan virus nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J. Virol. 81, 8634–8647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Flick, K. et al. Rescue of Hantaan virus minigenomes. Virology 306, 219–224 (2003).

    CAS  PubMed  Google Scholar 

  28. Boyloy, M., Plotch, S. J. & Krug, R. M. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc. Natl Acad. Sci. USA 75, 4886–4890 (1978).

    Google Scholar 

  29. Mir, M. A., Duran, W. A., Hjelle, B. L., Ye, C. & Panganiban, A. T. Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching. Proc. Natl Acad. Sci. USA 105, 19294–19299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Heinemann, P., Schmidt-Chanasit, J. & Günther, S. The N terminus of Andes virus L protein suppresses mRNA and protein expression in mammalian cells. J. Virol. 87, 6975–6985 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reguera, J., Weber, F. & Cusack, S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6, e1001101 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Garcin, D. et al. The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J. Virol. 69, 5754–5766 (1995). This article describes the prime-and-realign mechanism used in the initiation of hantavirus RNA synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fontana, J., López-Montero, N., Elliott, R. M., Fernández, J. J. & Risco, C. The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell. Microbiol. 10, 2012–2028 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Ravkov, E. V. & Compans, R. W. Hantavirus nucleocapsid protein is expressed as a membrane-associated protein in the perinuclear region. J. Virol. 75, 1808–1815 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kukkonen, S. K. J., Vaheri, A. & Plyusnin, A. Tula hantavirus L protein is a 250 kDa peripheral membrane-associated protein. J. Gen. Virol. 85, 1181–1189 (2004).

    CAS  PubMed  Google Scholar 

  36. Kaukinen, P., Vaheri, A. & Plyusnin, A. Hantavirus nucleocapsid protein: a multifunctional molecule with both house-keeping and ambassadorial duties. Arch. Virol. 150, 1693–1713 (2005).

    CAS  PubMed  Google Scholar 

  37. Ariza, A. et al. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucleic Acids Res. 17, 1–15 (2013).

    Google Scholar 

  38. Ferron, F. et al. The hexamer structure of the Rift Valley Fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. PLoS Pathog. 20117, e1002030 (2011).

    Google Scholar 

  39. Hepojoki, J., Strandin, T., Vaheri, A. & Lankinen, H. Interactions and oligomerization of hantavirus glycoproteins. J. Virol. 84, 227–242 (2010).

    CAS  PubMed  Google Scholar 

  40. Hepojoki, J. et al. Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J. Gen. Virol. 92, 1189–1198 (2010).

    Google Scholar 

  41. Strandin, T. et al. The cytoplasmic tail of hantavirus Gn interacts with RNA. Virology 418, 12–20 (2011).

    CAS  PubMed  Google Scholar 

  42. Piper, M. E., Sorenson, D. R. & Gerrard, S. R. Efficient cellular release of Rift Valley Fever virus requires genomic RNA. PLoS ONE 6, e18070 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Strandin, T., Hepojoki, J. & Vaheri, A. Cytoplasmic tails of bunyavirus Gn glycoproteins—could they act as matrix protein surrogates? Virology 437, 73–80 (2013).

    CAS  PubMed  Google Scholar 

  44. Zheng, W. & Tao, Y. J. Structure and assembly of influenza A virus ribonucleoprotein complex. FEBS Lett. 587, 1206–1214 (2013).

    CAS  PubMed  Google Scholar 

  45. Terasaki, K., Murakami, S., Lokugamage, K. G. & Makino, S. Mechanism of tripartite RNA genome packaging in Rift Valley fever virus. Proc. Natl Acad. Sci. USA 108, 804–809 (2011).

    CAS  PubMed  Google Scholar 

  46. Rowe, R. K., Suszko, J. W. & Pekosz, A. Roles for the recycling endosome, Rab8, and Rab11 in hatavirus release from epithelial cells. Virology 382, 239–249 (2008).

    CAS  PubMed  Google Scholar 

  47. Meyer, B. J. & Schmaljohn, C. S. Persistent hantavirus infections: characteristics and mechanisms. Trends Microbiol. 8, 61–67 (2000).

    CAS  PubMed  Google Scholar 

  48. Henttonen, H. et al. Recent discoveries of new hantaviruses widen their range and question their origins. Ann. N. Y. Acad. Sci. 1149, 84–89 (2008).

    CAS  PubMed  Google Scholar 

  49. Kallio, E. R. et al. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology 88, 1911–1916 (2007).

    PubMed  Google Scholar 

  50. Luis, A. D., Douglass, R. J., Hudson, P. J., Mills, J. N. & Bjørnstad, O. N. Sin Nombre hantavirus decreases survival of male deer mice. Oecologia 169, 431–439 (2012).

    PubMed  Google Scholar 

  51. Spengler, J. R. et al. Experimental Andes virus infection in deer mice: characteristics of infection and clearance in a heterologous rodent host. PLoS ONE 8, e55310 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Olsson, G. E., Leirs, H. & Henttonen, H. Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis. 10, 546–561 (2010).

    Google Scholar 

  53. Gavrilovskaya, I. N. et al. Features of circulation of hemorrhagic fever with renal syndrome (HFRS) virus among small mammals in the European U.S.S.R. Arch. Virol. 75, 313–316 (1983).

    CAS  PubMed  Google Scholar 

  54. Hardestam, J. et al. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Infect. Dis. 14, 1209–1215 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Botten, J. et al. Shedding and intracage transmission of Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus) model. J. Virol. 76, 7587–7594 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Voutilainen, L. Interactions between Puumala hantavirus and its host, the bank vole, in the boreal zone. Thesis, Univ. Helsinki (2013).

    Google Scholar 

  57. Easterbrook, J. D. & Klein, S. L. Immunological mechanisms mediating hantavirus persistence in rodent reservoirs. PLoS Pathog. 4, e1000172 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Easterbrook, J. D., Zink, M. C. & Klein, S. L. Regulatory T cells enhance persistence of the zoonotic pathogen Seoul virus in its reservoir host. Proc. Natl Acad. Sci. USA 104, 15502–15507 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schountz, T. et al. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proc. Natl Acad. Sci. USA 104, 15496–15501 (2007). References 58 and 59 are the first to describe the role of T cells in the reservoir hosts of hantaviruses.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Guivier, E. et al. TNF-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations. Infect. Genet. Evol. 10, 1208–1217 (2010).

    CAS  PubMed  Google Scholar 

  61. Au, R. Y., Jedlicka, A. E., Li, W., Pekosz, A. & Klein, S. L. Seoul virus suppresses NF-κB-mediated inflammatory responses of antigen presenting cells from Norway rats. Virology 400, 115–127 (2010).

    CAS  PubMed  Google Scholar 

  62. Li, W. & Klein, S. L. Seoul virus-infected rat lung endothelial cells and alveolar macrophages differ in their ability to support virus replication and induce regulatory T cell phenotypes. J. Virol. 86, 11845–11855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Matthys, V. & Mackow, E. R. Hantavirus regulation of type I interferon responses. Adv. Virol. 2012, 524024 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Martinez, V. P. et al. Person-to-person transmission of Andes virus. Emerg. Infect. Dis. 11, 1848–1853 (2005).

    PubMed  PubMed Central  Google Scholar 

  65. Sinisalo, M. et al. Headache and low platelets in a patient with acute leukemia. J. Clin. Virol. 48, 159–161 (2010).

    PubMed  Google Scholar 

  66. Van Loock, F., Thomas, I., Clement, J., Ghoos, S. & Colson, P. A case-control study after a hantavirus infection outbreak in the south of Belgium: who is at risk? Clin. Infect. Dis. 28, 834–839 (1999).

    CAS  PubMed  Google Scholar 

  67. Vapalahti, K., Virtala, A. M., Vaheri, A. & Vapalahti, O. Case-control study on Puumala virus infection: smoking is a risk factor. Epidemiol. Infect. 138, 576–584 (2010).

    CAS  PubMed  Google Scholar 

  68. Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).

    PubMed  Google Scholar 

  69. Peters, C. J. & Khan, A. S. Hantavirus pulmonary syndrome: the new American hemorrhagic fever. Clin. Infect. Dis. 34, 1224–1231 (2002).

    CAS  PubMed  Google Scholar 

  70. Bi, Z., Formenty, P. B. H. & Roth, C. E. Hantavirus infection: a review and global update. J. Infect. Dev. Ctries 2, 3–23 (2008).

    PubMed  Google Scholar 

  71. Kruger, D. H., Schönrich, G. & Klempa, B. Human pathogenic hantaviruses and prevention of infection. Hum. Vaccin. 7, 685–693 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Duchin, J. S. et al. Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease. N. Engl. J. Med. 330, 949–955 (1994).

    CAS  PubMed  Google Scholar 

  73. MacNeil, A., Nichol, S. T. & Spiropoulou, C. F. Hantavirus pulmonary syndrome. Virus Res. 162, 138–147 (2011).

    CAS  PubMed  Google Scholar 

  74. Knust, B., Macnell, A. & Rollin, P. E. Hantavirus pulmonary syndrome clinical findings: evaluation a surveillance case definition. Vector Borne Zoonotic Dis. 12, 393–399 (2012).

    PubMed  Google Scholar 

  75. Simpson, S. Q., Spikes, L., Patel, S. & Faruqi, I. Hantavirus pulmonary syndrome. Infect. Dis. North Am. 24, 159–173 (2010).

    Google Scholar 

  76. Rasmuson, J. et al. Time to revise the paradigm of hantavirus pulmonary syndrome caused by European hantavirus. Eur. J. Clin. Microbiol. Infect. Dis. 30, 685–690 (2011). This discussion points out that HCPS and HFRS seem to cause the same disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Klempa, B. et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics. Arch. Virol. 158, 521–529 (2013).

    CAS  PubMed  Google Scholar 

  78. Vaheri, A., Vapalahti, O. & Plyusnin, A. How to diagnose hantavirus infections and detect them in rodents and insectivores. Rev. Med. Virol. 18, 277–288 (2008).

    CAS  PubMed  Google Scholar 

  79. Outinen, T. K. et al. Plasma cell-free DNA levels are elevated in acute Puumala hantavirus infection. PLoS ONE 7, e31455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kanerva, M., Mustonen, J. & Vaheri, A. Pathogenesis of Puumala and other hantavirus infections. Rev. Med. Virol. 8, 67–86 (1998).

    CAS  PubMed  Google Scholar 

  81. Zaki, S. R. et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am. J. Pathol. 146, 552–579 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kanerva, M. et al. Pulmonary involvement in nephropathia epidemica: radiological findings and their clinical correlations. Clin. Nephrol. 46, 369–378 (1996).

    CAS  PubMed  Google Scholar 

  83. Shrivastava-Ranjan, P., Rollin, P. E. & Spiropoulou, C. F. Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J. Virol. 84, 11227–11234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gavrilovskaya, I., Gorbunova, E., Koster, F. & Mackow, E. Elevated VEGF levels in pulmonary edema fluid and PBMCs from patients with acute hantavirus pulmonary syndrome. Adv. Virol. 2012, 674360 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Gavrilovskaya, I. N., Gorbunova, E. E. & Mackow, E. R. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J. Virol. 84, 4832–4839 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Laine, O. et al. Platelet ligands and ADAMTS13 during Puumala hantavirus infection and associated thrombocytopenia. Blood Coagul. Fibrinolysis 22, 468–472 (2011).

    CAS  PubMed  Google Scholar 

  87. Laine, O. et al. Enhanced thrombin formation and fibrinolysis during acute Puumala hantavirus infection. Thromb. Res. 126, 154–158 (2010).

    CAS  PubMed  Google Scholar 

  88. Krautkrämer, E., Grouls, S., Stein, N., Reiser, J. & Zeier, M. Pathogenic Old World hantaviruses infect renal glomerular and tubular cells and induce disassembling of cell-to-cell contacts. J. Virol. 85, 9811–9823 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Valdivieso, F. et al. Neutralizing antibodies in survivors of Sin Nombre and Andes hantavirus infection. Emerg. Infect. Dis. 12, 166–168 (2006).

    PubMed  PubMed Central  Google Scholar 

  90. Terajima, M. & Ennis, F. A. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome. Viruses 3, 1059–1073 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. Rasmuson, J. et al. Presence of activated airway T lymphocytes in human Puumala hantavirus disease. Chest 140, 715–722 (2011).

    PubMed  Google Scholar 

  92. Tuuminen, T. et al. Human CD8+ T cell memory generation in Puumala hantavirus infection occurs after the acute phase and is associated with boosting of EBV-specific CD8+ memory T cells. J. Immunol. 179, 1988–1995 (2007).

    CAS  PubMed  Google Scholar 

  93. Van Epps, H. L. et al. Long-lived memory T lymphocyte responses after hantavirus infection. J. Exp. Med. 196, 579–588 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Manigold, T. et al. Highly differentiated, resting Gn-specific memory CD8+ T cells persist years after infection by Andes hantavirus. PLoS Pathog. 6, e1000779 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Akira, S., Hirano, T. Taga, T. & Kishimoto, T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 4, 2860–2867 (1990).

    CAS  PubMed  Google Scholar 

  96. Borges, A. A. et al. Role of mixed Th1 and Th2 serum cytokines on pathogenesis and prognosis of hantavirus pulmonary syndrome. Microbes Infect. 10, 1150–1157 (2008).

    CAS  PubMed  Google Scholar 

  97. Linderholm, M., Ahlm, C., Settergren, B., Waage, A. & Tärnvik, A. Elevated plasma levels of tumor necrosis factor (TNF)-α, soluble TNF receptors, interleukin (IL)-6, and IL-10 in patients with hemorrhagic fever with renal syndrome. J. Infect. Dis. 173, 38–43 (1996).

    CAS  PubMed  Google Scholar 

  98. Outinen, T. K. et al. The severity of Puumala hantavirus induced nephropathia epidemica can be better evaluated using plasma interleukin-6 than C-reactive protein determinations. BMC Infect. Dis. 10, 132 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Sadeghi, M. et al. Cytokine expression during early and late phase of acute Puumala hantavirus infection. BMC Immunol. 12, 65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mäkelä, S. et al. Urinary excretion of interleukin-6 correlates with proteinuria in acute Puumala hantavirus-induced nephritis. Am. J. Kidney Dis. 43, 809–816 (2004).

    PubMed  Google Scholar 

  101. Prescott, J. et al. The adaptive immune response does not influence hantavirus disease or persistence in Syrian hamster. Immunology http://dx.doi.org/10.1111/imm.12116 (2013).

  102. Tsukada, H. et al. Ligation of endothelial αvβ3 integrin increases capillary hydraulic conductivity in single microvessels of rat lung. J. Clin. Invest. 91, 103–109 (1995).

    Google Scholar 

  103. Bossi, F. et al. Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. J. Immunol. 173, 6921–6927 (2004).

    CAS  PubMed  Google Scholar 

  104. Paakkala, A., Mustonen, J., Viander, M., Huhtala, H. & Pasternack, A. Complement activation in nephropathia epidemica caused by Puumala hantavirus. Clin. Nephrol. 53, 424–431 (2000).

    CAS  PubMed  Google Scholar 

  105. Sane, J. et al. Complement activation in Puumala hantavirus infection correlates with disease severity. Ann. Med. 44, 468–475 (2012).

    CAS  PubMed  Google Scholar 

  106. Mantovani, A., Garlanda, C. & Bottazzi, B. Pentraxin 3, a non-redundant soluble pattern recognition receptor involved in innate immunity. Vaccine 21 (Suppl. 2), S43–S47 (2003).

    PubMed  Google Scholar 

  107. Outinen, T. K. et al. High pentraxin-3 plasma levels associate with thrombocytopenia in acute Puumala hantavirus-induced nephropathia epidemica. Eur. J. Clin. Microbiol. Infect. Dis. 31, 957–963 (2012).

    CAS  PubMed  Google Scholar 

  108. Hepojoki, J. et al. Acute hantavirus infection induces the production of galectin-3 binding protein (90K/Mac-2BP). Abstract O3-6. IX International Conference on HFRS, HPS & Hantaviruses. (2013).

  109. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryphophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    CAS  Google Scholar 

  110. Outinen, T. K. et al. High activity of indoleamine 2,3-dioxygenase is associated with renal insufficiency in Puumala hantavirus induced nephropathia epidemica. J. Med. Virol. 83, 731–737 (2011).

    CAS  PubMed  Google Scholar 

  111. Klingström, J. et al. Loss of cell membrane integrity in Puumala hantavirus-infected patients correlates with levels of epithelial cell apoptosis and perforin. J. Virol. 80, 8279–8282 (2006).

    PubMed  PubMed Central  Google Scholar 

  112. Groen, J. et al. Hantavirus antigen detection in kidney biopsies from patients with nephropathia epidemica. Clin. Nephrol. 46, 379–383 (1996).

    CAS  PubMed  Google Scholar 

  113. Ala-Houhala, I. et al. Increased glomerular permeability in patients with nephropathia epidemica caused by Puumala hantavirus. Nephrol. Dial. Transplant. 17, 246–252 (2002).

    PubMed  Google Scholar 

  114. Gupta, S. et al. Hantavirus-infection confers resistance to cytotoxic lymphocyte-mediated apoptosis. PLoS Pathog. 9, e1003272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Björkström, N. K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 208, 13–21 (2010).

    PubMed  Google Scholar 

  116. Gavrilovskaya, I. N., Gorbunova, E. E., Mackow, N. A. & Mackow, E. R. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability. J. Virol. 82, 5797–5806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gorbunova, E. E., Gavrilovskaya, I. N., Pepini, T. & Mackow, E. R. VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability. J. Virol. 85, 2296–2303 (2010).

    PubMed  PubMed Central  Google Scholar 

  118. Antonen, J. et al. A severe case of Puumala hantavirus infection successfully treated with bradykinin receptor antagonist icatibant. Scand. J. Infect. Dis. 45, 494–496 (2013). This is the first report on the treatment of hantavirus infection by inhibition of vascular leakage.

    PubMed  Google Scholar 

  119. Sironen, T. & Plyusnin, A. in Bunyaviridae: Molecular and Cellular Biology (eds Plyusnin, A. & Elliott, R. M.) 61–94 (Caister Academic, 2011).

    Google Scholar 

  120. Ramsden, C., Holmes, E. C. & Charleston, M. A. Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol. Biol. Evol. 26, 143–153 (2009).

    CAS  PubMed  Google Scholar 

  121. Blasdell, K., Henttonen, H. & Buchy, P. in New Frontiers of Molecular Epidemiology of Infectious Diseases (eds Morand, S., Beaudeau, F. & Cabaret, J.) 179–216 (Springer, 2012).

    Google Scholar 

  122. Kanerva, M., Vaheri, A., Mustonen, J. & Partanen, J. High-producer allele of tumour necrosis factor-α is part of the susceptibility MHC haplotype in severe Puumala virus-induced nephropathia epidemica. Scand. J. Infect. Dis. 30, 532–534 (1998).

    CAS  PubMed  Google Scholar 

  123. Guo, W. P. et al. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog. 9, e1003159 (2013). The phylogenetic analysis presented in this article suggests that hantaviruses first appeared in bats or in moles and shrews before emerging in rodents.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Klempa, B. et al. Occurrence of renal and pulmonary syndrome in a region of Northeast Germany where Tula hantavirus circulates. J. Clin. Microbiol. 41, 4894–4897 (2003).

    PubMed  PubMed Central  Google Scholar 

  125. Deter, J. et al. Association between the DQA MHC class II gene and Puumala virus infection in Myodes glareolus, the bank vole. Infect. Genet. Evol. 8, 450–458 (2008).

    CAS  PubMed  Google Scholar 

  126. Mustonen, J. et al. Genetic susceptibility to severe course of nephropathia epidemica caused by Puumala hantavirus. Kidney Int. 49, 217–221 (1996). This is the first work to relate the severity of an acute viral infection to a given HLA haplotype.

    CAS  PubMed  Google Scholar 

  127. Wang, M. L. et al. Genetic susceptibility to haemorrhagic fever with renal syndrome caused by Hantaan virus in Chinese Han population. Int. J. Immunogenet. 36, 227–229 (2009).

    CAS  PubMed  Google Scholar 

  128. Korva, M., Saksida, A., Kunilo, S., Vidan Jeras, B. & Avsic-Zupanc, T. HLA-associated hemorrhagic fever with renal syndrome disease progression in Slovenian patients. Clin. Vaccine Immunol. 18, 1435–1440 (2011). This large study shows that the severities of DOBV-mediated HFRS and PUUV-mediated HFRS are associated with different HLA haplotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mäkelä, S. et al. Human leucocyte antigen-B8-DR3 is a more important risk factor for severe Puumala hantavirus infection than the tumor necrosis factor-α(−308) G/A polymorphism. J. Infect. Dis. 186, 843–846 (2002).

    PubMed  Google Scholar 

  130. Maes, P., et al. Tumor necrosis factor-α genetic predisposing factors can influence clinical severity in nephropathia epidemica. Viral Immunol. 19, 558–564 (2006).

    CAS  PubMed  Google Scholar 

  131. Borges, A. A. et al. Association of −308G/A polymorphism in the tumor necrosis factor-α gene promoter with susceptibility to development of hantavirus cardiopulmonary syndrome in the Ribeirão Preto region, Brazil. Arch. Virol. 155, 971–975 (2010).

    CAS  PubMed  Google Scholar 

  132. Mäkelä, S. et al. Polymorphism of the cytokine genes in hospitalized patients with Puumala hantavirus infection. Nephrol. Dial. Transplant. 16, 1368–1373 (2001).

    PubMed  Google Scholar 

  133. Laine, O. et al. Polymorphism of PAI-1 and platelet GP Ia may associate with impairment of renal function and thrombocytopenia in Puumala hantavirus infection. Thromb. Res. 129, 611–615 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research was supported by European Commission Project QLK2-CT-2002-01358 (grant GOCE-CT-2003-010284 EDEN); the European Union (grant FP7-261504 EDENext; the project is catalogued as EDENext140 by the EDENext Steering Committee); The Academy of Finland; the Sigrid Jusélius Foundation; the Magnus Ehrnrooth Foundation; the Helsinki University Central Hospital, Finland; and Tampere University Hospital, Finland. The authors thank J. Antonen, P. Arstila, S. Butcher, F. Ennis, T. Hautala, J. Huiskonen, M. Hurme, J. Klingström, H. Lankinen, D. Libraty, Å. Lundkvist, A. Pasternack, A. Plyusnin, O. Vapalahti (as well as their former and current students and technicians) and the authors' former and current students and technicians for collaboration on research concerning hantavirus infections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Vaheri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Thrombocytopenia

A low platelet count in the blood.

Cytotoxic CD8+ T cells

A subpopulation of T cells that kills abnormal (infected, cancerous or damaged) cells as part of the adaptive immune system.

Complement system

Serum proteins that can protect against infection as part of innate immunity. This efficiently regulated system has three major pathways, namely the classical, alternative and the lectin-dependent pathways.

Clathrin-dependent endocytosis

A pathway for the internalization of plasma membrane proteins. Receptors cluster in membrane domains containing a polymeric clathrin coat and a complex of adaptor proteins and GTPases, leading to membrane invagination and scission to form a clathrin-coated vesicle containing the internalized receptors.

Early endosomes

Intracellular vesicular structures that are precursors of mature endosomes and have an important role in endocytosis.

P bodies

Cytoplasmic foci that are thought to store and degrade translationally repressed RNA.

Regulatory T cells

A subpopulation of T cells that modulates the immune system. These are CD4+CD25+FOX3P+ cells that have suppressor activity towards other T cells either by cell–cell contact or by cytokine release.

Pattern recognition receptors

A highly diverse group of soluble and surface-bound proteins that can detect specific molecular surface structures.

Proteinuria

The presence of excess protein in the urine.

Leukocytosis

A condition in which the number of white blood cells is above the normal range. Frequently associated with inflammation.

Fibrinolysis

A process whereby fibrin clots (the products of blood coagulation) are broken down.

Acute-phase proteins

A group of proteins, including C-reactive protein and fibrinogen, the blood concentration of which changes in response to trauma, inflammation or disease. These proteins can be inhibitors or mediators of inflammation.

Caspases

A family of cysteine proteases that execute cell death events in the apoptotic pathway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaheri, A., Strandin, T., Hepojoki, J. et al. Uncovering the mysteries of hantavirus infections. Nat Rev Microbiol 11, 539–550 (2013). https://doi.org/10.1038/nrmicro3066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3066

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology