Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium

Key Points

  • Excess oxygen can disrupt the growth of most organisms, but the underlying mechanisms of damage have proved difficult to unravel. The model bacterium Escherichia coli represents the best understood organism in terms of the effects of and response to oxidative stress.

  • Superoxide (O2) and hydrogen peroxide (H2O2) are formed within cells when molecular oxygen (O2) adventitiously acquires electrons from the reduced cofactors of flavoproteins.

  • Both O2 and H2O2 can oxidize the exposed Fe–S clusters of a family of dehydratases. This event destabilizes the clusters, and their consequent disintegration eliminates enzyme activity.

  • O2 and H2O2 also inactivate a variety of non-redox enzymes that use single Fe2+ ions as catalytic cofactors.

  • DNA is damaged when H2O2 reacts with the intracellular pool of unincorporated iron. The iron that is released from oxidized metalloproteins enlarges this pool and accelerates this process.

  • The transcription factor OxyR detects modest increments in intracellular H2O2. It activates several responses that help preserve the activities of Fe–S and mononuclear metalloenzymes.

  • The SoxRS system detects redox-active compounds that are released by plants and some bacteria. These compounds can generate toxic doses of O2, and the SoxRS system acts primarily to minimize the amounts of these compounds inside the cell.

  • Future studies should aim to determine whether the knowledge gained from studying oxidative stress in the facultative anaerobe E. coli is applicable to other organisms, such as strictly aerobic and microaerophilic bacteria.

Abstract

Oxic environments are hazardous. Molecular oxygen adventitiously abstracts electrons from many redox enzymes, continuously forming intracellular superoxide and hydrogen peroxide. These species can destroy the activities of metalloenzymes and the integrity of DNA, forcing organisms to protect themselves with scavenging enzymes and repair systems. Nevertheless, elevated levels of oxidants quickly poison bacteria, and both microbial competitors and hostile eukaryotic hosts exploit this vulnerability by assaulting these bacteria with peroxides or superoxide-forming antibiotics. In response, bacteria activate elegant adaptive strategies. In this Review, I summarize our current knowledge of oxidative stress in Escherichia coli, the model organism for which our understanding of damage and defence is most well developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation of reactive oxygen species and the enzymes used for scavenging.
Figure 2: Activation of redox-sensitive transcriptional regulators in Escherichia coli.
Figure 3: The role and oxidative vulnerability of dehydratase [4Fe–4S] clusters.
Figure 4: The role and oxidative vulnerability of mononuclear iron enzymes.
Figure 5: Overview of damage caused by reactive oxygen species in Escherichia coli.

Similar content being viewed by others

References

  1. Anbar, A. D. Elements and evolution. Science 322, 1481–1483 (2008). A clear overview of how metal availability has changed over geological timescales.

    Article  CAS  PubMed  Google Scholar 

  2. Ligeza, A., Tikhonov, A. N., Hyde, J. S. & Subczynski, W. K. Oxygen permeability of thylakoid memranes: electron paramagnetic resonance spin labeling study. Biochim. Biophys. Acta 1365, 453–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Boehme, D. E., Vincent, K. & Brown, O. R. Oxygen and toxicity: inhibition of amino acid biosynthesis. Nature 262, 418–420 (1976).

    Article  CAS  Google Scholar 

  4. Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P. & Fenn, W. O. Oxygen poisoning and X-irradiation: a mechanism in common. Science 119, 623–626 (1954). The paper which initiated the notion that radicals lie at the root of oxygen toxicity.

    Article  CAS  PubMed  Google Scholar 

  5. Loew, O. A new enzyme of general occurrence in organismis. Science 11, 701–702 (1900). The discovery of catalase, the first known scavenging enzyme.

    Article  CAS  PubMed  Google Scholar 

  6. McCord, J. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969). A seminal paper reporting the discovery of SOD.

    CAS  PubMed  Google Scholar 

  7. Carlioz, A. & Touati, D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5, 623–630 (1986). The first clear-cut demonstration that O 2 is toxic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seaver, L. C. & Imlay, J. A. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naqui, A. & Chance, B. Reactive oxygen intermediates in biochemistry. Ann. Rev. Biochem. 55, 137–166 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. Biochem. J. 134, 707–716 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imlay, J. A. & Fridovich, I. Superoxide production by respiring membranes of Escherichia coli. Free Radic. Res. Comms. 12–13, 59–66 (1991).

    Article  Google Scholar 

  12. Kussmaul, L. & Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl Acad. Sci. USA 103, 7607–7612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Messner, K. R. & Imlay, J. A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274, 10119–10128 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Seaver, L. C. & Imlay, J. A. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J. Biol. Chem. 279, 48742–48750 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Korshunov, S. & Imlay, J. A. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol. Microbiol. 75, 1389–1401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Massey, V. et al. The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem. Biophys. Res. Commun. 36, 891–897 (1969).

    Article  CAS  PubMed  Google Scholar 

  17. Geary, L. E. & Meister, A. On the mechanism of glutamine-dependent reductive amination of α-ketoglutarate catalyzed by glutamate synthase. J. Biol. Chem. 252, 3501–3508 (1977).

    CAS  PubMed  Google Scholar 

  18. Grinblat, L., Sreider, C. M. & Stoppani, A. O. Superoxide anion production by lipoamide dehydrogenase redox-cycling: effect of enzyme modifiers. Biochem. Int. 23, 83–92 (1991).

    CAS  PubMed  Google Scholar 

  19. Messner, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Imlay, J. A. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J. Biol. Chem. 270, 19767–19777 (1995).

    CAS  PubMed  Google Scholar 

  21. Korshunov, S. & Imlay, J. A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–6334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imlay, J. A. & Fridovich, I. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 266, 6957–6965 (1991).

    CAS  PubMed  Google Scholar 

  23. Benov, L. T. & Fridovich, I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J. Biol. Chem. 269, 25310–25314 (1994).

    CAS  PubMed  Google Scholar 

  24. Gort, A. S., Ferber, D. M. & Imlay, J. A. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol. Micro. 32, 179–191 (1999).

    Article  CAS  Google Scholar 

  25. Gort, A. S. & Imlay, J. A. Balance between endogenous superoxide stress and antioxidant defenses. J. Bacteriol. 180, 1402–1410 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tardat, B. & Touati, D. Two global regulators repress the anaerobic expression of MnSOD in Escherichia coli: Fur (ferric uptake regulation) and Arc (aerobic respiration control). Mol. Microbiol. 5, 455–465 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Massé, E. & Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 4620–4625 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kehres, D. G., Janakiraman, A., Slauch, J. M. & Maguire, M. E. Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J. Bacteriol. 184, 3151–3158 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greenberg, J. T., Monach, P., Chou, J. H., Josephy, P. D. & Demple, B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl Acad. Sci. USA 87, 6181–6185 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsaneva, I. R. & Weiss, B. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J. Bacteriol. 172, 4197–4205 (1990). Along with reference 29, the two independent studies that discovered SoxRS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Christman, M. F., Storz, G. & Ames, B. N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl Acad. Sci. USA 86, 3484–3488 (1989). The discovery of OxyR, the transcription factor that responds to H 2 O 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schellhorn, H. E. & Hassan, H. M. Transcriptional regulation of katE in Escherichia coli K-12. J. Bacteriol. 170, 4286–4292 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Putnam, C. D., Arvai, A. S., Bourne, Y. & Tainer, J. A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 296, 295–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Díaz, A., Loewen, P. C., Fita, I. & Carpena, X. Thirty years of heme catalases structural biology. Arch. Biochem. Biophys. 525, 102–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Cha, M.-K., Kim, H.-K. & Kim, I.-H. Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J. Bacteriol. 178, 5610–5614 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong, W., Cha, M.-K. & Kim, I.-H. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275, 2924–2930 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Arenas, F. A. et al. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species. PLoS ONE 6, e15979 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seaver, L. C. & Imlay, J. A. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183, 7182–7189 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aslund, F., Zheng, M., Beckwith, J. & Storz, G. Regulation of the OxyR transcriptional factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl Acad. Sci. USA 96, 6161–6165 (1999). A quantification of the extreme reactivity of OxyR with H 2 O 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001). Work establishing the structural consequence of the reaction between OxyR and H 2 O 2.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, M. et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183, 4562–4570 (2001). A transcriptome analysis that identifies members of the OxyR regulon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, J. W. & Helmann, J. D. The PerR transcription factor senses H2O2 by metal-catalyzed histidine oxidation. Nature 440, 363–367 (2006). The finding that PerR responds to H 2 O 2 by undergoing a Fenton reaction that causes the oxidation of a metal-coordinating His residue.

    Article  CAS  PubMed  Google Scholar 

  43. Lynch, R. & Fridovich, I. Permeation of the erythrocyte stroma by superoxide radical. J. Biol. Chem. 253, 4697–4699 (1978).

    CAS  PubMed  Google Scholar 

  44. Korshunov, S. S. & Imlay, J. A. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of phagocytosed bacteria. Mol. Microbiol. 43, 95–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Hassett, D. J., Charniga, L., Bean, K., Ohman, D. E. & Cohen, M. S. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect. Immun. 60, 328–336 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassan, H. M. & Fridovich, I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch. Biochem. Biophys. 196, 385–395 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Imlay, J. & Fridovich, I. Exogenous quinones directly inhibit the respiratory NADH dehydrogenase in Escherichia coli. Arch. Biochem. Biophys. 296, 337–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Pomposiello, P. J., Bennik, M. H. & Demple, B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol. 183, 3890–3902 (2001). A microarray study that identifies SoxRS-controlled genes in E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koo, M. S. et al. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22, 2614–2622 (2003). The discovery of the system that turns off SoxR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Griffith, K. L., Shah, I. M. & Wolf, R. E. Jr. Proteolytic degradation of Escherichia coli transcription activators Sox and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 51, 1801–1816 (2004). A satisfying explanation for how SoxS is deactivated when stress subsides.

    Article  CAS  PubMed  Google Scholar 

  51. Dietrich, L. E. P., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Gu, M. & Imlay, J. A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79, 1136–1150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krapp, A. R., Humbert, M. V. & Carrillo, N. The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. Microbiology 157, 957–965 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sheplock, R., Recinos, D. A., Mackow, N., Dietrich, L. E. & Chander, M. Species-specific residues calibrate SoxR sensitivity to redox-active molecules. Mol. Microbiol. 87, 368–381 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Fujikawa, M., Kobayashi, K. & Kozawa, T. Direct oxidation of the [2Fe–2S] cluster in SoxR protein by superoxide: distinct differential sensitivity to superoxide-mediated signal transduction. J. Biol. Chem. 287, 35702–35708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, D. et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol. Microbiol. 16, 45–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Aiba, H., Matsuyama, S., Mizuno, T. & Mizushima, S. Function of micF as an antisense RNA in osmoregulatory expression of the ompF gene in Escherichia coli. J. Bacteriol. 169, 3007–3012 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, J. H., Lee, K. L., Yeo, W. S., Park, S. J. & Roe, J. H. SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli. J. Bacteriol. 191, 4441–4450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liochev, S. I., Hausladen, A. & Fridovich, I. Nitroreductase A is regulated as a member of the soxRS regulon of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 3537–3539 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rau, J. & Stolz, A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent Azo reductases. Appl. Environ. Microbiol. 69, 3448–3455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, C. N. et al. A role of ygfZ in the Escherichia coli response to plumbagin challenge. J. Biomed. Sci. 17, 84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Giro, M., Carrillo, N. & Krapp, A. R. Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. Microbiology 152, 1119–1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Dietrich, L. E., Teal, T. K., Price-Whelan, A. & Newman, D. K. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321, 1203–1206 (2008). A paper which articulates the idea that SoxR has a variety of roles in different bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kobayashi, K. & Tagawa, S. Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J. Biochem. 136, 607–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Palma, M. et al. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect. Immun. 73, 2958–2966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Y. et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193, 3606–3617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dietrich, L. E. P. et al. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol. 195, 1371–1380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Mahoney, T. F. & Silhavy, T. J. The Cpx stress response confers resistance to some, but not all bactericidal antibiotics. J. Bacteriol. 195, 1869–1874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, Y. & Imlay, J. A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R. & Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Bielski, B. H. J. & Richter, H. W. A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption. J. Amer. Chem. Soc. 99, 3019–3023 (1977).

    Article  CAS  Google Scholar 

  73. Fee, J. A. Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7, 84–86 (1982).

    Article  CAS  Google Scholar 

  74. Fitzsimons, D. W. (ed.) Oxygen Free Radicals in Tissue Damage (Elsevier/North-Holland, 1979).

    Book  Google Scholar 

  75. Sawyer, D. T. & Valentine, J. S. How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981).

    Article  CAS  Google Scholar 

  76. Anjem, A. & Imlay, J. A. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J. Biol. Chem. 287, 15544–15556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuo, C. F., Mashino, T. & Fridovich, I. α,β-dihydroxyisovalerate dehydratase: a superoxide-sensitive enzyme. J. Biol. Chem. 262, 4724–4727 (1987). The first identification of an enzyme that is rapidly inactivated by O 2.

    CAS  PubMed  Google Scholar 

  78. Flint, D. H., Smyk-Randall, E., Tuminello, J. F., Draczynska-Lusiak, B. & Brown, O. R. The inactivation of dihydroxyacid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. J. Biol. Chem. 268, 25547–25552 (1993).

    CAS  PubMed  Google Scholar 

  79. Gardner, P. R. & Fridovich, I. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J. Biol. Chem. 266, 1478–1483 (1991).

    CAS  PubMed  Google Scholar 

  80. Gardner, P. R. & Fridovich, I. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 19328–19333 (1991).

    CAS  PubMed  Google Scholar 

  81. Liochev, S. I. & Fridovich, I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. Natl Acad. Sci. USA 89, 5892–5896 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flint, D. H., Tuminello, J. F. & Emptage, M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993). A study that defines the mechanisms and rates at which Fe–S dehydratases are poisoned by O 2.

    CAS  PubMed  Google Scholar 

  83. Wallace, M. A. et al. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis: cross-compartment protection by CuZnSOD. J. Biol. Chem. 279, 32055–32062 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Bilinski, T., Krawiec, Z., Liczmanski, A. & Litwinska, J. Is hydoxyl radical generated by the Fenton reaction in vivo? Biochem. Biophys. Res. Commun. 130, 533–539 (1985).

    Article  CAS  PubMed  Google Scholar 

  85. van Loon, A. P.G. M., Pesold-Hurt, B. & Schatz, G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl Acad. Sci. USA 83, 3820–3824 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Longo, V. D., Liou, L.-L., Valentine, J. S. & Gralla, E. B. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch. Biochem. Biophys. 365, 131–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Gralnick, J. A. & Downs, D. M. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J. Biol. Chem. 278, 20708–20715 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Justino, M. C., Almeida, C. C., Teixeira, M. & Saraiva, L. M. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J. Biol. Chem. 282, 10352–10359 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Gruer, M. J. & Guest, J. R. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140, 2531–2541 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Varghese, S. M., Tang, Y. & Imlay, J. A. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J. Bacteriol. 185, 221–230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Walling, C. Fenton's reagent revisited. Acc. Chem. Res. 8, 125–131 (1975). A foundational study of the Fenton reaction.

    Article  CAS  Google Scholar 

  92. Jang, S. & Imlay, J. A. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J. Biol. Chem. 282, 929–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Nachin, L., Loiseau, L., Expert, D. & Barras, F. SufC: an unorthodox cytoplasmic ABC ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J. 22, 427–437 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jang, S. & Imlay, J. A. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol. Microbiol. 78, 1448–1467 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, J. H., Yeo, W. S. & Roe, J. H. Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol. Microbiol. 51, 1745–1755 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Sobota, J. M. & Imlay, J. A. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc. Natl Acad. Sci. USA 108, 5402–5407 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gu, M. & Imlay, J. A. Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol. Microbiol. (in the press).

  98. Anjem, A., Varghese, S. & Imlay, J. A. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 72, 844–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Farr, S. B., D'Ari, R. & Touati, D. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc. Natl Acad. Sci. USA 83, 8268–8272 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Park, S., You, X. & Imlay, J. A. Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx mutants of Escherichia coli. Proc. Natl Acad. Sci. USA 102, 9317–9322 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Henle, E. S. et al. Sequence-specific DNA cleavage by Fe2+-mediated Fenton reactions has possible biological implications. J. Biol. Chem. 274, 962–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Hutchinson, F. Chemical changes induced in DNA by ionizing radiation. Prog. Nucl. Acid. Res. 32, 116–154 (1985).

    Google Scholar 

  103. Dizdaroglu, M., Rao, G., Halliwell, B. & Gajewski, E. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys. 285, 317–324 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Candeias, L. P. & Steenken, S. Electron transfer in di(deoxy)nucleoside phosphates in aqueous solution. Rapid migration of oxidative damage (via adenine) to guanine. J. Am. Chem. Soc. 115, 2437–2440 (1993).

    Article  CAS  Google Scholar 

  105. Hogg, M., Wallace, S. S. & Doublie, S. Bumps in the road: how replicative DNA polymerases see DNA damage. Curr. Opin. Struct. Biol. 15, 86–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Demple, B., Johnson, A. & Fung, D. Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc. Natl Acad. Sci. USA 83, 7731–7735 (1986). A report establishing that certain DNA repair enzymes are dedicated to the repair of oxidative lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Touati, D., Jacques, M., Tardat, B., Bouchard, L. & Despied, S. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J. Bacteriol. 177, 2305–2314 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Keyer, K. & Imlay, J. A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl Acad. Sci. USA 93, 13635–13640 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. & Hogle, J. M. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nature Struct. Biol. 5, 294–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Ilari, A., Ceci, P., Ferrari, D., Rossi, G. & Chiancone, E. Iron incorporation into E. coli Dps gives rise to a ferritin-like microcrystalline core. J. Biol. Chem. 277, 37619–37623 (2002). The demonstration that Dps protects cells by sequestering iron.

    Article  CAS  PubMed  Google Scholar 

  111. Altuvia, S., Almiron, M., Huisman, G., Kolter, R. & Storz, G. The dps promoter is activated by OxyR during growth and by IHF and σS in stationary phase. Mol. Microbiol. 13, 265–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, Y., Bauer, S. C. & Imlay, J. A. The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. J. Bacteriol. 193, 2186–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Varghese, S., Wu, A., Park, S., Imlay, K. R. C. & Imlay, J. A. Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol. Microbiol. 64, 822–830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zheng, M., Doan, B., Schneider, T. D. & Storz, G. OxyR and SoxRS regulation of fur. J. Bacteriol. 181, 4639–4643 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jiang, D., Hatahet, Z., Blaisdell, J. O., Melamede, R. J. & Wallace, S. S. Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and nei nth mutants. J. Bacteriol. 179, 3773–3782 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saito, Y. et al. Characterization of endonuclease III (nth) and endonuclease VIII (nei) mutants of Escherichia coli K-12. J. Bacteriol. 179, 3783–3785 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tchou, J. et al. 8-oxoguanine (8-hydroxyguanine) DNA glycoslyase and its substrate specificity. Proc. Natl Acad. Sci. USA 88, 4690–4694 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R. P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19, 6259–6265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Winterbourn, C. C. & Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328 (1999). The demonstration that O 2 and H 2 O 2 react poorly with thiol compounds.

    Article  CAS  PubMed  Google Scholar 

  120. Hondorp, E. R. & Matthews, R. G. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol. 2, e336 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Leichert, L. I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl Acad. Sci. USA 105, 8197–8202 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998). The resolution of the mechanism by which OxyR senses H 2 O 2.

    Article  CAS  PubMed  Google Scholar 

  123. Zhou, H. et al. The biological buffer bicarbonate/CO2 potentiates H2O2-mediated inactivation of protein tyrosine phosphatases. J. Am. Chem. Soc. 133, 15803–15805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ezraty, B., Chabalier, M., Ducret, A., Maisonneuve, E. & Dukan, S. CO2 exacerbates oxygen toxicity. EMBO Rep. 12, 321–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Seth, D., Hausladen, A., Wang, Y. J. & Stamler, J. S. Endogenous protein S-nitrosylation of E. coli: regulation by OxyR. Science 336, 470–473 (2012). The finding that OxyR might sense nitrosative stress.

    Article  CAS  PubMed  Google Scholar 

  126. Nichols, D. S. & McMeekin, T. A. Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids. J. Microbiol. Methods 48, 161–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Bielski, B. H. J., Arudi, R. L. & Sutherland, M. W. A study of the reactivity of HO2/O2 with unsaturated fatty acids. J. Biol. Chem. 258, 4759–4761 (1983). The demonstration that monounsaturated fatty acids cannot undergo peroxidation.

    CAS  PubMed  Google Scholar 

  128. Semchyshyn, H., Bagnyukova, T., Storey, K. & Lushhak, V. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol. Int. 29, 898–902 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Gonzalez-Flecha, B. & Demple, B. Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J. Bacteriol. 179, 382–388 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boylan, J. A., Lawrence, K. A., Downey, J. S. & Gherardini, F. C. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species. Mol. Microbiol. 68, 786–799 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sawers, G. & Watson, G. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol. Microbiol. 29, 945–954 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Pieulle, L., Magro, V. & Hatchikian, E. C. Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J. Bacteriol. 179, 5684–5692 (1997). Evidence that proteins might evolve to shield their oxidant-sensitive moieties from oxidants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ziegelhoffer, E. C. & Donohue, T. J. Bacterial responses to photo-oxidative stress. Nature Rev. Microbiol. 7, 856–863 (2009).

    Article  CAS  Google Scholar 

  134. Kosower, N. S., Kosower, E. M., Wertheim, B. & Correa, W. S. Diamide, a new reagent for the intracellullar oxidation of glutathione to the disulfide. Biochem. Biophys. Res. Commun. 37, 593–596 (1969).

    Article  CAS  PubMed  Google Scholar 

  135. Gebendorfer, K. M. et al. Identification of a hypochlorite- specific transcription factor from Escherichia coli. J. Biol. Chem. 287, 6892–6903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Winter, J., Ilbert, M., Graf, P. C., Ozcelik, D. & Jakob, U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135, 691–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Daly, M. J. et al. Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS ONE 5, e12570 (2010). A paper that suggests a novel mechanism of antioxidant action by manganese.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Link, A. J., Robison, K. & Church, G. M. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18, 1259–1313 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Parsonage, D. et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583–10592 (2005). An excellent study of the reaction between the thiol-dependent peroxidase AhpC and H 2 O 2.

    Article  CAS  PubMed  Google Scholar 

  140. Gardner, P. R. & Fridovich, I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J. Biol. Chem. 267, 8757–8763 (1992).

    CAS  PubMed  Google Scholar 

  141. Massey, V. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 36, 22459–22462 (1994). A review detailing the chemistry of oxygen reduction by protein flavins, the reaction that underlies adventitious formation of O 2 and H 2 O 2.

    Google Scholar 

  142. Becker, A. et al. Iron center, substrate recognition and mechanism of peptide deformylase. Nature Struct. Biol. 5, 1053–1058 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to past and current members of his laboratory who have contributed to many of the ideas in this Review. Work in the author's laboratory is currently supported by grants GM49640 and GM101012 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Imlay.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

James A. Imlay's homepage

PowerPoint slides

Glossary

Reduced

With a lower oxidation state, typically as a result of acceptance of an electron from another molecule or atom.

Spin-aligned electrons

Electrons that are in separate orbitals and have the same spin quantum number. Two electrons must have opposite spins to reside in the same orbital.

Reduction potential

The measure of the thermodynamic affinity of a compound for an electron.

Metal centres

Metal atoms that confer structure and/or catalytic function on a protein. Redox enzymes commonly use the transition metals iron, copper, manganese, molybdenum, nickel and selenium for electron transfer reactions.

Flavins

Organic cofactors that bind to redox enzymes in the form of FAD or flavin mononucleotide (FMN). These cofactors are commonly used to mediate electron exchange between divalent electron donors and univalent acceptors.

Respiratory quinones

Lipid-soluble organic molecules that carry electrons between membrane-bound redox enzymes.

Autoxidation

Electron transfer from a reduced enzyme or cofactor to molecular oxygen.

Hyperoxia

Molecular oxygen concentrations above that of air (22%).

Thiol-based peroxidase

An enzyme that uses a redox-active Cys residue to reduce hydrogen peroxide to water.

RpoS system

The regulon that is governed by RNA polymerase σ–factor RpoS. RpoS is activated in stationary phase and under many stress conditions that suppress growth.

Chromophores

Light-absorbing compounds.

Michael acceptors

Unsaturated carbonyl compounds that are vulnerable to addition reactions by nucleophiles.

Lewis acid

A molecular moiety that can share an electron pair provided by a donor compound.

Half-time

In an exponential decay process, the time needed for conversion of half of the reactant to product.

Isc system

(Fe–S cluster synthesis system). A multiprotein complex that assembles Fe–S clusters on a scaffold protein and then transfers them to client proteins.

Suf system

A protein complex that assembles and transfers Fe–S clusters to recipient proteins. The Suf system comprises different proteins to the Fe–S cluster synthesis (Isc) system, and the activity of the Suf system is more resistant than that of the Isc system to chemical stress and iron deficiency.

SOS system

The global response to DNA damage that is exhibited by many bacteria.

Peroxidation

Lipid damage in which peroxyl groups are added to unsaturated bonds, thereby disrupting lipid packing in the membrane.

Redoxins

Proteins that use their Cys residues to deliver electrons to oxidants. Thioredoxins and glutaredoxins reduce disulphide bonds in cellular proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imlay, J. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11, 443–454 (2013). https://doi.org/10.1038/nrmicro3032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3032

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology