Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Extreme sweetness: protein glycosylation in archaea

Abstract

Although N-glycosylation was first reported in archaea almost 40 years ago, detailed insights into this process have become possible only recently, with the availability of complete genome sequences for almost 200 archaeal species and the development of appropriate molecular tools. As a result of these advances, recent efforts have not only succeeded in delineating the pathways involved in archaeal N-glycosylation, but also begun to reveal how such post-translational protein modification helps archaea to survive in some of the harshest environments on the planet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The diversity of N-linked glycans decorating archaeal glycoproteins.
Figure 2: N-glycosylation pathways in archaea.

Similar content being viewed by others

References

  1. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, M. & Varki, A. The sialome—far more than the sum of its parts. OMICS 14, 455–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Neuberger, A. Carbohydrates in proteins. The carbohydrate component of crystalline egg albumin. Biochem. J. 32, 1435–1451 (1938).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mescher, M. F. & Strominger, J. L. Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J. Biol. Chem. 251, 2005–2014 (1976).

    CAS  PubMed  Google Scholar 

  6. Nothaft, H. & Szymanski, C. M. Protein glycosylation in bacteria: sweeter than ever. Nature Rev. Microbiol. 8, 765–778 (2010).

    Article  CAS  Google Scholar 

  7. Calo, D., Kaminski, L. & Eichler, J. Protein glycosylation in Archaea: sweet and extreme. Glycobiology 20, 1065–1079 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Jarrell, K. F., Jones, G. M. & Nair, D. B. Biosynthesis and role of N-linked glycosylation in cell surface structures of archaea with a focus on flagella and S layers. Int. J. Microbiol. 2010, 470138 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schiller, B., Hykollari, A., Yan, S., Paschinger, K. & Wilson, I. B. Complicated N-linked glycans in simple organisms. Biol. Chem. 393, 661–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Linton, D. et al. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol. Microbiol. 55, 1695–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Jervis, A. J. et al. Characterization of the structurally diverse N-linked glycans of Campylobacter species. J. Bacteriol. 194, 2355–2362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nothaft, H. et al. Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol. Cell Proteomics 11, 1203–1219 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schwarz, F. & Aebi, M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Soppa, J. From genomes to function: haloarchaea as model organisms. Microbiology 152, 585–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Tripepi, M. et al. N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J. Bacteriol. 194, 4876–4887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guan, Z., Naparstek, S., Kaminski, L., Konrad, Z. & Eichler, J. Distinct glycan-charged phosphodolichol carriers are required for the assembly of the pentasaccharide N-linked to the Haloferax volcanii S-layer glycoprotein. Mol. Microbiol. 78, 1294–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaminski, L. et al. AglJ adds the first sugar of the N-linked pentasaccharide decorating the Haloferax volcanii S-layer glycoprotein. J. Bacteriol. 192, 5572–5579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yurist-Doutsch, S. et al. aglF, aglG and aglI, novel members of a gene cluster involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol. Microbiol. 69, 1234–1245 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Abu-Qarn, M. et al. Identification of AglE, a second glycosyltransferase involved in N-glycosylation of the Haloferax volcanii S-layer glycoprotein. J. Bacteriol. 190, 3140–3146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abu-Qarn, M. et al. Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J. Mol. Biol. 14, 1224–1236 (2007).

    Article  Google Scholar 

  21. Kuntz, C., Sonnenbichler, J., Sonnenbichler, I., Sumper, M. & Zeitler, R. Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii. Glycobiology 7, 897–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Kaminski, L., Guan, Z., Abu-Qarn, A., Konrad, Z. & Eichler, J. AglR is required for addition of the final mannose residue of the N-linked glycan decorating the Haloferax volcanii S-layer glycoprotein. Biochim Biophys Acta 1820, 1664–1670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen-Rosenzweig, C., Yurist-Doutsch, S. & Eichler, J. AglS, a novel component of the Haloferax volcanii N-glycosylation pathway, is a dolichol phosphate-mannose mannosyltransferase. J. Bacteriol. 194, 6909–6916 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yurist-Doutsch, S. et al. N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM. Mol. Microbiol. 75, 1047–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Magidovich, H. et al. AglP is a S-adenosyl-l-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii. Mol. Microbiol. 76, 190–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Calo, D., Guan, Z., Naparstek, S. & Eichler, J. Different routes to the same ending: comparing the N-glycosylation processes of Haloferax volcanii and Haloarcula marismortui, two halophilic archaea from the Dead Sea. Mol. Microbiol. 81, 1166–1177 (2012).

    Article  Google Scholar 

  27. Chaban, B., Voisin, S., Kelly, J., Logan, S. M. & Jarrell, K. F. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 61, 259–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Voisin, S. et al. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280, 16586–16593 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Chaban, B., Logan, S. M., Kelly, J. F. & Jarrell, K. F. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae. J. Bacteriol. 191, 187–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Shams-Eldin, H., Chaban, B., Niehus, S., Schwarz, R. T. & Jarrell, K. F. Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae. J. Bacteriol. 190, 2217–2220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kelly, J., Logan, S. M., Jarrell, K. F., VanDyke, D. J. & Vinogradov, E. A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr. Res. 344, 648–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ng, S. Y. et al. Genetic and mass spectrometry analyses of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J. Bacteriol. 193, 804–814 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. VanDyke, D. J. et al. Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol. Microbiol. 72, 633–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, G. M. et al. Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis. J. Bacteriol. 194, 2693–2702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jarrell, K. F. & Albers, S. V. The archaellum: an old motility structure with a new name. Trends Microbiol. 20, 307–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84, 54–68 (1972).

    CAS  Google Scholar 

  37. Peyfoon, E. et al. The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea 2010, 754101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zähringer, U., Moll, H., Hettmann, T., Knirel, Y. A. & Schäfer, G. Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius has a unique Asn-linked highly branched hexasaccharide chain containing 6-sulfoquinovose. Eur. J. Biochem. 267, 4144–4149 (2000).

    Article  PubMed  Google Scholar 

  39. Benning, C. Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 53–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Wagner, M. et al. Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front. Microbiol. 3, 214 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meyer, B. H. et al. Sulfoquinovose synthase – an important enzyme in the N-glycosylation pathway of Sulfolobus acidocaldarius. Mol. Microbiol. 82, 1150–1163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magidovich, H. & Eichler, J. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol. Lett. 300, 122–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Guan, Z., Meyer, B. H., Albers, S. V. & Eichler, J. The thermoacidophilic archaeon Sulfolobus acidocaldarius contains an unusually short, highly reduced dolichyl phosphate. Biochim. Biophys. Acta 1811, 607–616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abu-Qarn, M. & Eichler, J. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons. Archaea 2, 73–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Igura, M. & Kohda, D. Quantitative assessment of the preferences for the amino acid residues flanking archaeal N-linked glycosylation sites. Glycobiology 21, 575–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Zeitler, R., Hochmuth, E., Deutzmann, R. & Sumper, M. Exchange of Ser-4 for Val, Leu or Asn in the sequon Asn-Ala-Ser does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium. Glycobiology 8, 1157–1164 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Kowarik, M. et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohorko, E., Glockshuber, R. & Aebi, M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J. Inherit. Metab. Dis. 34, 869–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Abu-Qarn, M. & Eichler, J. Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation. Mol. Microbiol. 61, 511–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Igura, M. et al. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 27, 234–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Matsumoto, S. et al. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution. Biochemistry 51, 4157–4166 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Nasab, F. P., Schulz, B. L., Gamarro, F., Parodi, A. J. & Aebi, M. All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 3758–3768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lechner, J. & Sumper, M. Structure and biosynthesis of prokaryotic glycoproteins. Annu. Rev. Biochem. 58, 173–194 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Guan, Z., Naparstek, S., Calo, D. & Eichler, J. Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ. Microbiol. 14, 743–753 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Kohler, P. R. A. & Metcalf, W. M. Genetic manipulation of Methanosarcina spp. Front. Microbiol. 3, 259 (2012).

    Google Scholar 

  56. Maita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. & Kohda, D. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J. Biol. Chem. 285, 4941–4950 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Yan, Q. & Lennarz, W. J. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J. Biol. Chem. 277, 47692–47700 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K. P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Chaban, B., Ng, S. & Jarrell, K. F. Archaeal habitats — from the extreme to the ordinary. Can. J. Microbiol. 52, 53–116 (2006).

    Article  Google Scholar 

  60. Mengele, R. & Sumper, M. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J. Biol. Chem. 267, 8182–8185 (1992).

    CAS  PubMed  Google Scholar 

  61. Calo, D., Guan, Z. & Eichler, J. Glyco-engineering in Archaea: differential N-glycosylation of the S-layer glycoprotein in a transformed Haloferax volcanii strain. Microb. Biotechnol. 4, 461–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kärcher, U. et al. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J. Biol. Chem. 268, 26821–26826 (1993).

    PubMed  Google Scholar 

  63. Vinogradov, E. et al. Cell surface glycoproteins from Thermoplasma acidophilum are modified with an N-linked glycan containing 6-C-sulfofucose. Glycobiology 22, 1256–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by the Israel Science Foundation (grant 8/11) and the US Army Research Office (W911NF-11-1-520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Eichler.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jerry Eichler's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, J. Extreme sweetness: protein glycosylation in archaea. Nat Rev Microbiol 11, 151–156 (2013). https://doi.org/10.1038/nrmicro2957

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2957

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology