Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

West Nile virus infection and immunity

Key Points

  • West Nile virus (WNV) continues to pose a significant public health risk throughout most of the world. In the United States, WNV is endemic and the leading cause of mosquito-borne encephalitis.

  • Currently there is no approved vaccine or therapy to prevent or limit WNV infection in humans.

  • Mosquitoes have innate immune programmes, similar to those of mammalian hosts, that function to limit viral replication and spread. In addition, mosquito salivary factors enhance WNV replication, dissemination and virus-induced disease.

  • WNV can cross the blood–brain barrier by one of several routes, including passive transport through the endothelium, infection of the olfactory neurons, transport by infected immune cells, inflammation-induced disruption of blood–brain barrier integrity, and direct axonal retrograde transport from infected peripheral neurons.

  • Both innate and adaptive immune responses are required for controlling WNV replication and protection against a lethal disease outcome.

  • Type I interferons are crucial for eliciting cell-intrinsic immune defences and priming adaptive immune responses during WNV infection. In particular, the RIG-I-like receptor and Toll-like receptor signalling pathways are essential for triggering interferons and immune defences in response to WNV infection.

Abstract

West Nile virus (WNV) is an emerging neurotropic flavivirus that is transmitted to humans through the bite of an infected mosquito. WNV has disseminated broadly in the Western hemisphere and now poses a significant public health risk. The continuing spread of WNV, combined with the lack of specific therapeutics or vaccines to combat or prevent infection, imparts a pressing need to identify the viral and host processes that control the outcome of and immunity to WNV infection. Here, we provide an overview of recent research that has revealed the virus–host interface controlling WNV infection and immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The West Nile virus life cycle.
Figure 2: Pathogenesis of West Nile virus in humans.
Figure 3: Cell-intrinsic innate immune response to West Nile virus infection.
Figure 4: Cell-mediated immunity to West Nile virus infection.

Similar content being viewed by others

References

  1. Smithburn, K. C., Hughes, T. P., Burke, A. W. & Paul, J. H. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. Hyg. 20, 471–492 (1940).

    Article  Google Scholar 

  2. CDC. West Nile virus disease and other arboviral diseases — United States, 2011. Morb. Mortal. Wkly Rep. 61, 510–514 (2012).

  3. Reiter, P. West Nile virus in Europe: understanding the present to gauge the future. Euro Surveill. 15, 19508 (2010).

    CAS  PubMed  Google Scholar 

  4. Brinton, M. A. The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu. Rev. Microbiol. 56, 371–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kramer, L. D., Styer, L. M. & Ebel, G. D. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 53, 61–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Higgs, S., Schneider, B. S., Vanlandingham, D. L., Klingler, K. A. & Gould, E. A. Nonviremic transmission of West Nile virus. Proc. Natl Acad. Sci. USA 102, 8871–8874 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Root, J. J. et al. Experimental infection of fox squirrels (Sciurus niger) with West Nile virus. Am. J. Trop. Med. Hyg. 75, 697–701 (2006).

    Article  PubMed  Google Scholar 

  8. Klenk, K. et al. Alligators as West Nile virus amplifiers. Emerging Infect. Dis. 10, 2150–2155 (2004).

    Article  Google Scholar 

  9. Samuel, M. A. & Diamond, M. S. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol. 80, 9349–9360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao, S. Y., Guzman, H., Zhang, H., Travassos da Rosa, A. P. & Tesh, R. B. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerging Infect. Dis. 7, 714–721 (2001).

    Article  CAS  Google Scholar 

  11. Ratterree, M. S. et al. Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J. Infect. Dis. 189, 669–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Girard, Y. A., Klingler, K. A. & Higgs, S. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector Borne Zoonotic Dis. 4, 109–122 (2004).

    Article  PubMed  Google Scholar 

  13. Moskalyk, L. A., Oo, M. M. & Jacobs-Lorena, M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 5, 261–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arjona, A., Wang, P., Montgomery, R. R. & Fikrig, E. Innate immune control of West Nile virus infection. Cell. Microbiol. 13, 1648–1658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glaser, R. L. & Meola, M. A. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5, e11977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 109, e23–e31 (2012).

    Article  PubMed  Google Scholar 

  18. Styer, L. M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3, 1262–1270 (2007). This investigation determines the amount of WNV that is delivered to the host during the bite of a mosquito and shows that this amount varies between mosquito species.

    Article  CAS  PubMed  Google Scholar 

  19. Titus, R. G., Bishop, J. V. & Mejia, J. S. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 28, 131–141 (2006).

    CAS  PubMed  Google Scholar 

  20. Schneider, B. S. et al. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol. 19, 74–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Styer, L. M. et al. Mosquito saliva causes enhancement of West Nile virus infection in mice. J. Virol. 85, 1517–1527 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Schneider, B. S. et al. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PLoS ONE 5, e11704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schneider, B. S. & Higgs, S. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102, 400–408 (2008).

    Article  PubMed  Google Scholar 

  24. Lim, P. Y., Behr, M. J., Chadwick, C. M., Shi, P. Y. & Bernard, K. A. Keratinocytes are cell targets of West Nile virus in vivo. J. Virol. 85, 5197–5201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnston, L. J., Halliday, G. M. & King, N. J. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J. Invest. Dermatol. 114, 560–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bai, F. et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J. Infect. Dis. 202, 1804–1812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Samuel, M. A. et al. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol. 80, 7009–7019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ben-Nathan, D., Huitinga, I., Lustig, S., van Rooijen, N. & Kobiler, D. West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch. Virol. 141, 459–469 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Beasley, D. W., Li, L., Suderman, M. T. & Barrett, A. D. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Beasley, D. W. et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol. 79, 8339–8347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verma, S. et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier. Virology 385, 425–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Diamond, M. S., Shrestha, B., Mehlhop, E., Sitati, E. & Engle, M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol. 16, 259–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, P. et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J. Virol. 82, 8978–8985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verma, S., Kumar, M., Gurjav, U., Lum, S. & Nerurkar, V. R. Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397, 130–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Getts, D. R. et al. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J. Exp. Med. 205, 2319–2337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Samuel, M. A., Wang, H., Siddharthan, V., Morrey, J. D. & Diamond, M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl Acad. Sci. USA 104, 17140–17145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suthar, M. S. et al. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 6, e1000757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  40. Porterfield, J. A simple plaque inhibition test for antiviral agents: application to assay of interferon. Lancet 274, 326–327 (1959). This report is the first to demonstrate the antiviral effects of IFN in controlling WNV replication and spread in cell culture.

    Article  Google Scholar 

  41. Isaacs, A. & Westwood, M. A. Duration of protective action of interferon against infection with West Nile virus. Nature 184 (Suppl. 16), 1232–1233 (1959).

    Article  CAS  PubMed  Google Scholar 

  42. Samuel, M. A. & Diamond, M. S. Type I IFN protects against lethal West Nile Virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79, 13350–13361 (2005). This article describes the importance of type I IFNs in protection against WNV infection and controlling viral replication in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loo, Y. M. & Gale, M. Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G. & Gale, M. Jr. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J. Virol. 82, 609–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Shipley, J. G., Vandergaast, R., Deng, L., Mariuzza, R. A. & Fredericksen, B. L. Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome. Virology 432, 232–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Bruns, A. M. & Horvath, C. M. Activation of RIG-I-like receptor signal transduction. Crit. Rev. Biochem. Mol. Biol. 47, 194–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Suthar, M. S. et al. The RIG-I-like receptor LGP2 controls CD8+ T cell survival and fitness. Immunity 37, 235–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Daffis, S., Samuel, M. A., Suthar, M. S., Gale, M. Jr & Diamond, M. S. Toll-like receptor 3 has a protective role against West Nile virus infection. J. Virol. 82, 10349–10358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson, J. R., de Sessions, P. F., Leon, M. A. & Scholle, F. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J. Virol. 82, 8262–8271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szretter, K. J. et al. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J. Virol. 84, 12125–12138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Town, T. et al. Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30, 242–253 (2009). This report describes the role of TLR7 and its adaptor MYD88 in the recruitment of immune cells to the CNS during WNV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Horvath, C. M. The Jak-STAT pathway stimulated by interferon α or interferon β. Sci. STKE 2004, tr10 (2004).

    PubMed  Google Scholar 

  60. Tenoever, B. R. et al. Multiple functions of the IKK-related kinase IKKɛ in interferon-mediated antiviral immunity. Science 315, 1274–1278 (2007). This work identifies a novel phosphorylation event by IKKɛ on serine 708 of STAT1.

    Article  CAS  PubMed  Google Scholar 

  61. Perwitasari, O., Cho, H., Diamond, M. S. & Gale, M. Jr. Inhibitor of κB kinase ɛ (IKKɛ), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West Nile virus infection. J. Biol. Chem. 286, 44412–44423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Daffis, S., Samuel, M. A., Keller, B. C., Gale, M. Jr & Diamond, M. S. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and independent mechanisms. PLoS Pathog. 3, e106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Daffis, S. et al. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J. Virol. 82, 8465–8475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Daffis, S., Suthar, M. S., Szretter, K. J., Gale, M. Jr & Diamond, M. S. Induction of IFN-β and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7. PLoS Pathog. 5, e1000607 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perelygin, A. A. et al. Positional cloning of the murine flavivirus resistance gene. Proc. Natl Acad. Sci. USA 99, 9322–9327 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim, J. K. et al. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog. 5, e1000321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bigham, A. W. et al. Host genetic risk factors for West Nile virus infection and disease progression. PLoS ONE 6, e24745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16, 6355–6363 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Malathi, K. et al. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16, 2108–2119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schuessler, A. et al. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J. Virol. 86, 5708–5718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scherbik, S. V., Paranjape, J. M., Stockman, B. M., Silverman, R. H. & Brinton, M. A. RNase L plays a role in the antiviral response to West Nile virus. J. Virol. 80, 2987–2999 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mashimo, T. et al. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl Acad. Sci. USA 99, 11311–11316 (2002). This report identifies the mutated flavivirus resistance gene that is present in all inbred mice and allows for a viable WNV mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kajaste-Rudnitski, A. et al. The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. J. Biol. Chem. 281, 4624–4637 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Elbahesh, H., Jha, B. K., Silverman, R. H., Scherbik, S. V. & Brinton, M. A. The Flvr-encoded murine oligoadenylate synthetase 1b (Oas1b) suppresses 2-5A synthesis in intact cells. Virology 409, 262–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Pfaller, C. K., Li, Z., George, C. X. & Samuel, C. E. Protein kinase PKR & RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response. Curr. Opin. Immunol. 23, 573–582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gilfoy, F. D. & Mason, P. W. West Nile virus-induced IFN production is mediated by the double-stranded RNA-dependent protein kinase, PKR. J. Virol. 81, 11148–11158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang, D. et al. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections. J. Virol. 84, 8332–8341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Diamond, M. S. & Gale, M. Jr. Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol. 33, 522–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamkanfi, M. & Dixit, V. M. Modulation of inflammasome pathways by bacterial and viral pathogens. J. Immunol. 187, 597–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Ramos, H. J. et al. IL-1β signaling promotes CNS-intrinsic immune control of west nile virus infection. PLoS Pathog. 8, e1003039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Byrne, S. N., Halliday, G. M., Johnston, L. J. & King, N. J. Interleukin-1β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J. Invest. Dermatol. 117, 702–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Kumar, M., Verma, S. & Nerurkar, V. R. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J. Neuroinflammation 7, 73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fredericksen, B. L., Smith, M., Katze, M. G., Shi, P. Y. & Gale, M. Jr. The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J. Virol. 78, 7737–7747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gillespie, L. K., Hoenen, A., Morgan, G. & Mackenzie, J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438–10447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Keller, B. C. et al. Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J. Virol. 80, 9424–9434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Evans, J. D., Crown, R. A., Sohn, J. A. & Seeger, C. West Nile virus infection induces depletion of IFNAR1 protein levels. Viral Immunol. 24, 253–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mackenzie, J. M., Khromykh, A. A. & Parton, R. G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2, 229–239 (2007). This report describes how WNV modulates cholesterol biosynthesis to support viral replication and modulate type I IFN signalling.

    Article  CAS  PubMed  Google Scholar 

  89. Suthar, M. S., Brassil, M. M., Blahnik, G. & Gale, M. Jr. Infectious clones of novel lineage 1 and lineage 2 West Nile virus strains WNV-TX02 and WNV-Madagascar. J. Virol. 86, 7704–7709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Evans, J. D. & Seeger, C. Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J. Virol. 81, 11809–11816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, W. J. et al. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J. Virol. 80, 2396–2404 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, W. J. et al. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J. Virol. 79, 1934–1942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Munoz-Jordan, J. L. et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J. Virol. 79, 8004–8013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laurent-Rolle, M. et al. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J. Virol. 84, 3503–3515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fensterl, V. & Sen, G. C. The ISG56/IFIT1 gene family. J. Interferon Cytokine Res. 31, 71–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Szretter, K. J. et al. 2′-O methylation of the viral mRNA cap by west nile virus evades Ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 8, e1002698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shrestha, B., Zhang, B., Purtha, W. E., Klein, R. S. & Diamond, M. S. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J. Virol. 82, 8956–8964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martina, B. E. et al. DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-α and TNF-α. Virus Res. 135, 64–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Silva, M. C., Guerrero-Plata, A., Gilfoy, F. D., Garofalo, R. P. & Mason, P. W. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J. Virol. 81, 13640–13648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stoermer, K. A. & Morrison, T. E. Complement and viral pathogenesis. Virology 411, 362–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lisnic, V. J., Krmpotic, A. & Jonjic, S. Modulation of natural killer cell activity by viruses. Curr. Opin. Microbiol. 13, 530–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, M. et al. Anti-West Nile virus activity of in vitro expanded human primary natural killer cells. BMC Immunol. 11, 3 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hershkovitz, O. et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J. Immunol. 183, 2610–2621 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Shrestha, B., Samuel, M. A. & Diamond, M. S. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J. Virol. 80, 119–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vogt, M. R. et al. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcγ receptor and complement-dependent effector mechanisms. J. Virol. 85, 11567–11580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xin, L. et al. Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J. Immunol. 184, 7047–7056 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Crichlow, R., Bailey, J. & Gardner, C. Cerebrospinal fluid neutrophilic pleocytosis in hospitalized West Nile virus patients. J. Am. Board Fam. Pract. 17, 470–472 (2004).

    Article  PubMed  Google Scholar 

  109. Cantile, C., Del Piero, F., Di Guardo, G. & Arispici, M. Pathologic and immunohistochemical findings in naturally occuring West Nile virus infection in horses. Vet. Pathol. 38, 414–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, T. et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524–2531 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Welte, T. et al. Role of two distinct γδ T cell subsets during West Nile virus infection. FEMS Immunol. Med. Microbiol. 53, 275–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mehlhop, E. et al. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J. Virol. 79, 7466–7477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mehlhop, E. & Diamond, M. S. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J. Exp. Med. 203, 1371–1381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mehlhop, E., Fuchs, A., Engle, M. & Diamond, M. S. Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism. Virology 393, 11–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Fuchs, A., Pinto, A. K., Schwaeble, W. J. & Diamond, M. S. The lectin pathway of complement activation contributes to protection from West Nile virus infection. Virology 412, 101–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Chung, K. M. et al. West Nile virus non-structural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc. Natl Acad. Sci. USA 103, 19111–19116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krishna, V. D., Rangappa, M. & Satchidanandam, V. Virus-specific cytolytic antibodies to nonstructural protein 1 of Japanese encephalitis virus effect reduction of virus output from infected cells. J. Virol. 83, 4766–4777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Avirutnan, P. et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med. 207, 793–806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Avirutnan, P. et al. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J. Immunol. 187, 424–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Purtha, W. E., Chachu, K. A., Virgin, H. W. & Diamond, M. S. Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling. J. Virol. 82, 10964–10974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pinto, A. K. et al. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. PLoS Pathog. 7, e1002407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Engle, M. J. & Diamond, M. S. Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J. Virol. 77, 12941–12949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ben-Nathan, D. et al. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating west nile virus infection in mice. J. Infect. Dis. 188, 5–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Oliphant, T. et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nature Med. 11, 522–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Diamond, M. S. et al. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198, 1853–1862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chambers, T. J. et al. West Nile 25A virus infection of B-cell-deficient (μMT) mice: characterization of neuroinvasiveness and pseudoreversion of the viral envelope protein. J. Gen. Virol. 89, 627–635 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Shrestha, B. & Diamond, M. S. Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 78, 8312–8321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brien, J. D., Uhrlaub, J. L. & Nikolich-Zugich, J. Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection. Eur. J. Immunol. 37, 1855–1863 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Shrestha, B. & Diamond, M. S. Fas ligand interactions contribute to CD8+ T cell-mediated control of West Nile virus infection in the central nervous system. J. Virol. 81, 11749–11757 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shrestha, B., Pinto, A. K., Green, S., Bosch, I. & Diamond, M. S. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J. Virol. 86, 8937–8948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Y., Lobigs, M., Lee, E. & Mullbacher, A. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J. Virol. 77, 13323–13334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sitati, E. M. & Diamond, M. S. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J. Virol. 80, 12060–12069 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brien, J. D., Uhrlaub, J. L. & Nikolich-Zugich, J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 181, 8568–8575 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Lanteri, M. C. et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J. Clin. Invest. 119, 3266–3277 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lim, J. K. et al. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J. Infect. Dis. 201, 178–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Glass, W. G. et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J. Exp. Med. 202, 1087–1098 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Biedenbender, R., Bevilacqua, J., Gregg, A. M., Watson, M. & Dayan, G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J. Infect. Dis. 203, 75–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Monath, T. P. et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl Acad. Sci. USA 103, 6694–6699 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Widman, D. G. et al. Evaluation of RepliVAX WN, a single-cycle flavivirus vaccine, in a non-human primate model of West Nile virus infection. Am. J. Trop. Med. Hyg. 82, 1160–1167 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nelson, M. H. et al. Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine. Vaccine 29, 174–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ledgerwood, J. E. et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J. Infect. Dis. 203, 1396–1404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Martin, J. E. et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J. Infect. Dis. 196, 1732–1740 (2007).

    Article  PubMed  Google Scholar 

  144. Beasley, D. W. Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy 3, 269–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Kalil, A. C. et al. Use of interferon-α in patients with West Nile encephalitis: report of 2 cases. Clin. Infect. Dis. 40, 764–766 (2005).

    Article  PubMed  Google Scholar 

  146. Deas, T. S. et al. In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob. Agents Chemother. 51, 2470–2482 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Puig-Basagoiti, F. et al. High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery. Antimicrob. Agents Chemother. 49, 4980–4988 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ben-Nathan, D. et al. Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. BMC Infect. Dis. 9, 18 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bedard, K. M. et al. Isoflavone agonists of IRF-3 dependent signaling have antiviral activity against RNA viruses. J. Virol. 86, 7334–7344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Duthie, M. S., Windish, H. P., Fox, C. B. & Reed, S. G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239, 178–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bondre, V. P., Jadi, R. S., Mishra, A. C., Yergolkar, P. N. & Arankalle, V. A. West Nile virus isolates from India: evidence for a distinct genetic lineage. J. Gen. Virol. 88, 875–884 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Berthet, F. X. et al. Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J. Gen. Virol. 78, 2293–2297 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Papa, A. et al. West Nile virus lineage 2 from blood donor, Greece. Emerging Infect. Dis. 18, 688–689 (2012).

    Article  Google Scholar 

  154. Bakonyi, T., Hubalek, Z., Rudolf, I. & Nowotny, N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerging Infect. Dis. 11, 225–231 (2005).

    Article  CAS  Google Scholar 

  155. Lvov, D. K. et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch. Virol. Suppl. 2004, 85–96 (2004).

    Google Scholar 

  156. Sejvar, J. J. et al. Neurologic manifestations and outcome of West Nile virus infection. JAMA 290, 511–515 (2003).

    Article  PubMed  Google Scholar 

  157. Fischer, S. A. Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. Transplantation 86, 1327–1339 (2008).

    Article  PubMed  Google Scholar 

  158. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl Acad. Sci. USA 104, 582–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444–6455 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Schnell, G., Loo, Y.-M., Marcotrigiano, J. & Gale, M. Jr. Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Pathog. 8, e1002839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pichlmair, A. et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 83, 10761–10769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Triantafilou, K. et al. Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses. J. Cell Sci. 125, 4761–4769 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Saito, T. & Gale, M. Jr. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med. 205, 1523–1527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Berke, I. C. & Modis, Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 31, 1714–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Horner, S. M., Liu, H. M., Park, H. S., Briley, J. & Gale, M. Jr. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl Acad. Sci. USA 108, 14590–14595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, H. M. et al. The mitochondrial targeting chaperone 14-3-3ɛ regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ichikawa, T. et al. Involvement of IL-1β and IL-10 in IFN-α-mediated antiviral gene induction in human hepatoma cells. Biochem. Biophys. Res. Commun. 294, 414–422 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work from the Gale laboratory has been supported by the US National Institutes of Health (NIH) and Burroughs Wellcome. The Diamond laboratory has been supported by the US NIH. The authors thank B. Doehle and H. Ramos for comments and manuscript revisions, and apologize to the many authors whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gale Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary table 1

Innate immune response determinants of protection against WNV 1 infection in mice. (PDF 358 kb)

Glossary

Neurotropic

Pertaining to a pathogen: primarily targeting and infecting cells within the central nervous system.

Non-viraemic transmission

Viral transmission between two mosquitoes that are feeding on the same host which lacks detectable virus in the blood.

Regulatory T cells

A subset of CD4+ T cells that can suppress the responses of other T cells.

C-type lectins

Carbohydrate-binding protein domains that are involved in a wide range of functions.

RNAi

A cellular process that occurs in plants and mammals to regulate gene expression by inhibiting translation of or degrading host cell mRNAs.

Oxidative stress

An accumulation of reactive oxygen species that can trigger apoptosis or necrosis.

Pathogen-associated molecular patterns

Molecular signatures that are found on pathogens and are identified by the host cell as non-self.

Humoral immunity

Immunity conferred through antibodies secreted by B cells.

Caspases

A family of cysteine-aspartic proteases involved in apoptosis, necrosis and inflammasome activation.

Perforin

A cytolytic protein that is released by T cells and natural killer cells and forms pores on target cells.

Adjuvants

Pharmacological or biochemical agents that are often combined with vaccines to stimulate the immune response to an antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthar, M., Diamond, M. & Gale Jr, M. West Nile virus infection and immunity. Nat Rev Microbiol 11, 115–128 (2013). https://doi.org/10.1038/nrmicro2950

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing