Abstract
Recent ecological research has revealed that environmental factors can strongly affect insect immunity and influence the outcome of host–parasite interactions. To date, however, most studies examining immune function in mosquitoes have ignored environmental variability. We argue that one such environmental variable, temperature, influences both vector immunity and the parasite itself. As temperatures in the field can vary greatly from the ambient temperature in the laboratory, it will be essential to take temperature into account when studying vector immunology.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others

References
Cirimotich, C. M., Dong, Y. M., Garver, L. S., Sim, S. Z. & Dimopoulos, G. Mosquito immune defenses against Plasmodium infection. Dev. Comp. Immunol. 34, 387–395 (2010).
Magalhaes, T. et al. Expression of defensin, cecropin, and transferrin in Aedes aegypti (Diptera: Culicidae) infected with Wuchereria bancrofti (Spirurida: Onchocercidae), and the abnormal development of nematodes in the mosquito. Exp. Parasitol. 120, 364–371 (2008).
Steinert, S. & Levashina, E. A. Intracellular immune responses of dipteran insects. Immunol. Rev. 240, 129–140 (2011).
Christophides, G. K., Vlachou, D. & Kafatos, F. C. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol. Rev. 198, 127–148 (2004).
Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).
Crampton, J. M. Approaches to vector control: new and trusted prospects for genetic manipulation of insect vectors. Trans. R. Soc. Trop. Med. Hyg. 88, 141–143 (1994).
Speranca, M. A. & Capurro, M. L. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era - a review. Mem. Inst. Oswaldo Cruz 102, 425–433 (2007).
Jaramillo-Gutierrez, G. et al. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes. BMC Microbiol. 9, 154 (2009).
Thomson, R. C. M. The reactions of mosquitoes to temperature and humidity. Bull. Entomol. Res. 29, 125–140 (1938).
Rund, S. S. C., Hou, T. Y., Ward, S. M., Collins, F. H. & Duffield, G. E. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl Acad. Sci. USA 108, E421–E430 (2011).
Okech, B. A., Gouagna, L. C., Yan, G., Githure, J. I. & Beier, J. C. Larval habitats of Anopheles gambiae s. s. (Diptera: Culicidae) influences vector competence to Plasmodium falciparum parasites. Malaria J. 6, 50 (2007).
Okech, B. A. et al. Influence of sugar availability and indoor microclimate on survival of Anopheles gambiae (Diptera: Culicidae) under semifield conditions in western Kenya. J. Med. Entomol. 40, 657–663 (2003).
Alto, B. W., Lounibos, L. P., Mores, C. N. & Reiskind, M. H. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc. R. Soc. B 275, 463–471 (2008).
Impoinvil, D. E., Cardenas, G. A., Gihture, J. I., Mbogo, C. M. & Beier, J. C. Constant temperature and time period effects on Anopheles gambiae egg hatching. J. Am. Mosq. Control Assoc. 23, 124–130 (2007).
Lyimo, E. O., Takken, W. & Koella, J. C. Effect of rearing temperature and larval density on larval survival, age at pupation, and adult size of Anopheles gambiae. Entomol. Exp. Appl. 63, 265–271 (1992).
Shelton, R. M. Effect of temperatures on development of eight mosquito species. Mosq. News 33, 1–12 (1973).
Zakharova, N. F., Losev, G. I. & Yakubovich, V. Y. The effect of density and temperature on larval populations of the malaria vector Anopheles sacharovi. Med. Parazitol. (Mosk.) 1990, 3–7 (1990) (in Russian).
Lardeux, F. J., Tejerina, R. H., Quispe, V. & Chavez, T. K. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malaria J. 7, 141 (2008).
Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011).
Kilpatrick, A. M., Meola, M. A., Moudy, R. M. & Kramer, L. D. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 4, e1000092 (2008).
Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J. & Staples, J. E. Incubation periods of yellow fever virus. Am. J. Trop. Med. Hyg. 83, 183–188 (2010).
Westbrook, C. J., Reiskind, M. H., Pesko, K. N., Greene, K. E. & Lounibos, L. P. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector Borne Zoonotic Dis. 10, 241–247 (2010).
Devaney, E. & Lewis, E. Temperature-induced refractoriness of Aedes aegypti mosquitoes to infection with the filaria Brugia pahangi. Med. Vet. Entomol. 7, 297–298 (1993).
Lardeux, F. & Cheffort, J. Temperature thresholds and statistical modelling of larval Wuchereria bancrofti (Filariidea: Onchocercidae) developmental rates. Parasitology 114, 123–134 (1997).
Okech, B. A. et al. Resistance of early midgut stages of natural Plasmodium falciparum parasites to high temperatures in experimentally infected Anopheles gambiae (Diptera: Culicidae). J. Parasitol. 90, 764–768 (2004).
Vanderberg, J. P. & Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. J. Parasitol. 52, 559–564 (1966).
Sato, Y., Matsuoka, H., Araki, M., Ando, K. & Chinzei, Y. Effect of temperature to Plasmodium berghei and P. yoelii on mosquito stage in Anopheles stephensi. Jpn J. Parasitol. 45, 98–104 (1996).
Ball, G. H. & Chao, J. Temperature stresses on mosquito phase of Plasmodium relictum. J. Parasitol. 50, 748–752 (1964).
Chao, J. & Ball, G. H. Effect of temperature on Plasmodium relictum in Culex tarsalis. J. Parasitol. 49, 28 (1962).
LaPointe, D. A., Goff, M. L. & Atkinson, C. T. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i. J. Parasitol. 96, 318–324 (2010).
Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).
Dimopoulos, G. Insect immunity and its implication in mosquito–malaria interactions. Cell. Microbiol. 5, 3–14 (2003).
Yassine, H. & Osta, M. A. Anopheles gambiae innate immunity. Cell. Microbiol. 12, 1–9 (2010).
Agaisse, H. & Perrimon, N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72–82 (2004).
Garver, L. S., Dong, Y. M. & Dimopoulos, G. Casper controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 5, e1000335 (2009).
Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns. (Oxford Univ. Press, 2004).
Angilletta, M. J., Huey, R. B. & Frazier, M. R. Thermodynamic effects on organismal performance: is hotter better? Physiol. Biochem. Zool. 83, 197–206 (2010).
Catalan, T., Wozniak, A., Niemeyer, H. M., Kalergis, A. M. & Bozinovic, F. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. J. Insect Physiol. 58, 310–317 (2011).
Adamo, S. A. & Lovett, M. M. E. Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp. Biol. 214, 1997–2004 (2011).
Linder, J. E., Owers, K. A. & Promislow, D. E. L. The effects of temperature on host–pathogen interactions in D. melanogaster: who benefits? J. Insect Physiol. 54, 297–308 (2008).
Triggs, A. & Knell, R. J. Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella. J. Anim. Ecol. 81, 386–394 (2012).
Fischer, K., Koelzow, N., Hoeltje, H. & Karl, I. Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166, 23–33 (2011).
Suwanchaichinda, C. & Paskewitz, S. M. Effects of larval nutrition, adult body size, and adult temperature on the ability of Anopheles gambiae (Diptera: Culicidae) to melanize sephadex beads. J. Med. Entomol. 35, 157–161 (1998).
Murdock, C. C. et al. Complex effects of temperature on mosquito immune function. Proc. R. Soc. B 279, 3357–3366 (2012).
Oliveira, G., Lieberman, J. & Barillas-Mury, C. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335, 856–859 (2012).
Mitchell, S. E., Rogers, E. S., Little, T. J. & Read, A. F. Host-parasite and genotype-by-environment interactions: temperature modifies potential for selection by a sterilizing pathogen. Evolution 59, 70–80 (2005).
Stacey, D. A. et al. Genotype and temperature influences pea aphid resistance to a fungal entomopathogen. Physiol. Entomol. 28, 75–81 (2003).
Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).
Fialho, R. F. & Schall, J. J. Thermal ecology of a malarial parasite and its insect vector: consequences for the parasites transmission success. J. Anim. Ecol. 64, 553–562 (1995).
Noden, B. H., Kent, M. D. & Beier, J. C. The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi. Parasitology 111, 539–545 (1995).
Afrane, Y. A., Little, T. J., Lawson, B. W., Githeko, A. K. & Yan, G. Y. Deforestation and vectorial capacity of Anopheles gambiae giles mosquitoes in malaria transmission, Kenya. Emerg. Infect. Dis. 14, 1533–1538 (2008).
Reisen, W. K., Fang, Y. & Martinez, V. M. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43, 309–317 (2006).
Paaijmans, K. P., Blanford, S., Chan, B. H. K. & Thomas, M. B. Warmer temperatures reduce the vectorial capacity of malaria mosquitoes. Biol. Lett. 8, 465–468 (2012).
Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).
Mitri, C. et al. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog. 5, e10000576 (2009).
Dong, Y. M. et al. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog. 2, 513–525 (2006).
Poudel, S. S., Newman, R. A. & Vaughan, J. A. Rodent Plasmodium: population dynamics of early sporogony within Anopheles stephensi mosquitoes. J. Parasitol. 94, 999–1008 (2008).
Vaughan, J. A. Population dynamics of Plasmodium sporogony. Trends Parasitol. 23, 63–70 (2007).
Rastogi, M., Pal, N. L. & Sen, A. B. Effect of variation in temperature on development of Plasmodium berghei (NK-65 strain) in Anopheles stephensi. Folia Parasitol. 34, 289–297 (1987).
Garver, L. S. et al. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action. PLoS Pathog. 8, e1002737 (2012).
Thomas, M. B. et al. Lessons from agriculture for the sustainable management of malaria vectors. PLoS Med. 9, e1001262 (2012).
van den Berg, H., Cham, M. K. & Ichimori, K. Handbook for Integrated Vector Management. (WHO, 2012).
Vinson, E. B. & Kearns, C. W. Temperature and the action of DDT on the American roach. J. Econ. Entomol. 45, 484–496 (1952).
Blum, M. S. & Kearns, C. W. Temperature and the action of pyrethrum in the American cockroach. J. Econ. Entomol. 49, 862–865 (1956).
Sparks, T. C., Pavloff, A. M., Rose, R. L. & Clower, D. F. Temperature-toxicity relationships of pyrethroids on Heliothis virescens (F) (Lepidoptera, Noctuidae) and Anthonomus grandis grandis Boheman (Coleoptera, Curculionidae). J. Econ. Entomol. 76, 243–246 (1983).
Sparks, T. C., Shour, M. H. & Wellemeyer, E. G. Temperature-toxicity relationships of pyrethroids on three lepidopterans. J. Econ. Entomol. 75, 643–646 (1982).
Cutkomp, L. K. & Subramanyam, B. Toxicity of pyrethroids to Aedes aegypti larvae in relation to temperature. J. Am. Mosq. Control Assoc. 2, 347–349 (1986).
Devries, D. H. & Georghiou, G. P. Influence of temperature on the toxicity of insecticides to susceptible and resistant house flies (Diptera, Muscidae). J. Econ. Entomol. 72, 48–50 (1979).
Watters, F. L., White, N. D. G. & Cote, D. Effect of temperature on toxicity and persistence of three pyrethroid insecticides applied to fir plywood for the control of the red flour beetle (Coleoptera, Tenebrionidae). J. Econ. Entomol. 76, 11–16 (1983).
Hodjati, M. H. & Curtis, C. F. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med. Vet. Entomol. 13, 415–422 (1999).
Harwood, A. D., You, J. & Lydy, M. J. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ. Toxicol. Chem. 28, 1051–1058 (2009).
Miller, T. A. & Adams, M. E. in Insecticide Mode of Action (ed. Coats, J. R.) 3–27 (Academic, 1982).
Kokoza, V. et al. Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc. Natl Acad. Sci. USA 107, 8111–8116 (2010).
Dong, Y. et al. Engineered Anopheles immunity to Plasmodium infection. PLoS Pathog. 7, 1–12 (2011).
Li, C. Y., Marrelli, M. T., Yan, G. Y. & Jacobs-Lorena, M. Fitness of transgenic Anopheles stephensi mosquitoes expressing the SM1 peptide under the control of a vitellogenin promoter. J. Hered. 99, 275–282 (2008).
Yoshida, S. et al. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog. 3, 1962–1970 (2007).
Isaacs, A. T. et al. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 7, e1002017 (2011).
Ferguson, H. M. & Read, A. F. Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol. 18, 256–261 (2002).
Libert, S., Chao, Y., Chu, X. & Pletcher, S. D. Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFκB. signaling. Aging Cell 5, 533–543 (2006).
Rodrigues, J., Brayner, F. A., Alves, L. C., Dixit, R. & Barillas-Mury, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329, 1353–1355 (2010).
Roth, O. et al. Transgenerational immune priming as cryptic parental care. J. Anim. Ecol. 79, 722–722 (2010).
Hurst, G. D. D., Jiggins, F. M. & Robinson, S. J. W. What causes inefficient transmission of male-killing Wolbachia in Drosophila? Heredity 87, 220–226 (2001).
Guruprasad, N. M., Mouton, L. & Puttaraju, H. P. Effect of Wolbachia infection and temperature variations on the fecundity of the Uzifly Exorista sorbillans (Diptera: Tachinidae). Symbiosis 54, 151–158 (2011).
Mouton, L., Henri, H., Charif, D., Bouletrea, M. & Vavre, F. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol. Lett. 3, 210–213 (2007).
Wiwatanaratanabutr, I. & Kittayapong, P. Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. J. Invertebr. Pathol. 102, 220–224 (2009).
Mouton, L., Henri, H., Bouletreau, M. & Vavre, F. Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132, 49–56 (2006).
Clancy, D. J. & Hoffmann, A. A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 86, 13–24 (1998).
Reynolds, K. T., Thomson, L. J. & Hoffmann, A. A. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 164, 1027–1034 (2003).
Gething, P. et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors 4, 92 (2011).
Smith, D. L., Smith, T. A. & Hay, S. I. in Shrinking the Malaria Map: a Prospectus on Malaria Elimination (eds Feachem, R. G. A., Phillips, A. A. & Targett, G. A.) 108–126 (The Global Health Group, 2009).
Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. Forest Entomol. 9, 201–208 (2007).
Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. Forest Entomol. 9, 189–199 (2007).
Ratte, H. T. in Environmental Physiology and Biochemistry of Insects (ed. Hoffmann, K. H.) 31–66 (Springer, 1985).
Cloudsley-Thompson, J. L. The significance of fluctuating temperatures on the physiology and ecology of insects. Entomologist 86, 183–189 (1953).
Eubank, W. P., Atmar, J. W. & Ellington, J. J. The significance and thermodynamics of fluctuating versus static thermal environments on Heliothis zea egg development rates. Environ. Entomol. 2, 491–496 (1973).
Humpesch, U. H. Effect of fluctuating temperature on the duration of embryonic development in two Ecdyonurus spp. and Rhithrogena cf hybrida (Ephemeroptera) from Austrian streams. Oecologia 55, 285–288 (1982).
Lazzaro, B. P., Flores, H. A., Lorigan, J. G. & Yourth, C. P. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathog. 4, e1000025 (2008).
Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nature Clim. Change 12 Aug 2012 (doi:10.1038/nclimate1659).
Ouedraogo, R. M., Cusson, M., Goettel, M. S. & Brodeur, J. Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum. J. Invertebr. Pathol. 82, 103–109 (2003).
Parham, P. et al. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malaria J. 11, 271 (2012).
Afrane, Y. A., Little, T. J., Lawson, B. W., Githeko, A. K. & Yan, G. Deforestation and vectorial capacity of Anopheles gambiae giles mosquitoes in malaria transmission, Kenya. Emerg. Infect. Dis. 14, 1533–1538 (2008).
Paaijmans, K. P. & Thomas, M. B. The influence of mosquito resting behaviour and associated microclimate for malaria risk. Malaria J. 10, 183 (2011).
Peterson, T. M. L., Gow, A. J. & Luckhart, S. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Rad. Biol. Med. 42, 132–142 (2007).
Luckhart, S., Vodovotz, Y., Cui, L. W. & Rosenberg, R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl Acad. Sci. USA 95, 5700–5705 (1998).
Kumar, S. & Barillas-Mury, C. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes. Insect Biochem. Mol. Biol. 35, 721–727 (2005).
Collins, F. H. et al. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607–610 (1986).
Gorman, M. J., Cornel, A. J., Collins, F. H. & Paskewitz, S. M. A shared genetic mechanism for melanotic encapsulation of CM-Sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae. Exp. Parasitol. 84, 380–386 (1996).
Hillyer, J. F. & Estevez-Lao, T. Y. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev. Comp. Immunol. 34, 141–149 (2010).
Hillyer, J. F., Barreau, C. & Vernick, K. D. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Int. J. Parasitol. 37, 673–681 (2007).
Dimopoulos, G., Richman, A., Muller, H. M. & Kafatos, F. C. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl Acad. Sci. USA 94, 11508–11513 (1997).
Acknowledgements
The authors thank members of the Thomas, Read and Julian F. Hillyer laboratory groups for discussion, and D. Kroczynski and J. Teeple for insectary support. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institute of General Medical Sciences, the US National Institute of Allergy and Infectious Diseases or the US National Institutes of Health (NIH). Work in the authors' laboratories is funded, in part, by a grant from the US Pennsylvania Department of Health using Tobacco Settlement Funds. The Pennsylvania Department of Health specifically disclaims responsibility for any analyses, interpretations or conclusions. Work in the authors' laboratories was also funded by the following: the US National Science Foundation (NSF)–NIH Ecology of Infectious Diseases programme (grant EF-0914384) and the NIH R21 programme (grant AI096036-01).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1 (table)
Ambient temperature shapes a suite of phenotypes in a diversity of parasite taxa (PDF 307 kb)
Related links
Rights and permissions
About this article
Cite this article
Murdock, C., Paaijmans, K., Cox-Foster, D. et al. Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol 10, 869–876 (2012). https://doi.org/10.1038/nrmicro2900
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2900
This article is cited by
-
Vector microbiome: will global climate change affect vector competence and pathogen transmission?
Parasitology Research (2023)
-
Impact of Human Activities on Disease-Spreading Mosquitoes in Urban Areas
Journal of Urban Health (2023)
-
Relationship between temperature and Anopheles gambiae sensu lato mosquitoes' susceptibility to pyrethroids and expression of metabolic enzymes
Parasites & Vectors (2022)
-
The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria
Nature Ecology & Evolution (2020)
-
The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus
Parasites & Vectors (2019)