Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic sequencing of uncultured microorganisms from single cells

Key Points

  • Genomic sequencing from a single cell became feasible with the introduction of the multiple displacement amplification (MDA) method, which generates micrograms of amplified DNA.

  • Methods have improved over the past 10 years to isolate single cells, amplify the DNA by MDA for use in sequencing, and assemble genomes from those single cells.

  • A vast range of novel microorganisms will now be amenable to genomic sequencing directly from single cells, eliminating the need to develop culture methods in order to obtain sufficient DNA template.

  • Single-cell sequencing is increasingly being used in combination with metagenomic sequencing to assemble individual genomes and analyse complex microbial communities.

Abstract

Sequencing DNA from single cells has opened new windows onto the microbial world. It is becoming routine to sequence bacterial species directly from environmental samples or clinical specimens without the need to develop cultivation methods. Recent technical improvements often allow nearly complete genome assembly from these otherwise inaccessible species. New bioinformatics methods are also improving genome assembly from single cells. The use of single-cell sequencing in combination with metagenomic analysis is also emerging as a powerful new strategy to analyse bacterial communities. Here, the technical developments that have enabled single-cell sequencing, as well as some of the most exciting applications of this approach from the past few years, are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of DNA amplification reactions and cellular DNA replication.
Figure 2: Isolation of single microbial cells.
Figure 3: Metagenomics and single-cell sequencing.
Figure 4: Combined use of metagenomic and single-cell approaches.

Similar content being viewed by others

References

  1. Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005). The first paper to demonstrate DNA sequencing from a single cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dean, F. B., Nelson, J. R., Giesler, T. L. & Lasken, R. S. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002). References 2 and 3 introduced the MDA method.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R. & Stahl, D. A. Microbial ecology & evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Woese, C. R., Fox, G. E. & Zablen, L. Conservation of primary structure in 16S ribosomal RNA. Nature 254, 83–86 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Giovanonni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature Biotech. 345, 60–63 (1990).

    Google Scholar 

  8. Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community using 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature Biotech. 345, 63–65 (1990).

    CAS  Google Scholar 

  10. Handelsman, J. Metagenomics: applications of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  PubMed  Google Scholar 

  13. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 5, e77 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yooseph, S. et al. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilbert, J. A. & Dupont, C. L. Microbial metagenomics: beyond the genome. Ann. Rev. Mar. Sci. 3, 347–371 (2011).

    Article  PubMed  Google Scholar 

  16. Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl Acad. Sci. USA 107, 16184–16189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Telenius, H. et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13, 718–725 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, L. et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl Acad. Sci. USA 89, 5847–5851 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartley, J. L. Amplification of nucleic acid sequences using oligonucleotides of random sequence as primers. US Patent 5043272 (1989).

  20. Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Blanco, L. & Salas, M. Characterization and purification of a phage φ29-encoded DNA polymerase required for the initiation of replication. Proc. Natl Acad. Sci. USA 81, 5325–5329 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blanco, L. et al. Highly efficient DNA synthesis by the phage φ29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264, 8935–8940 (1989).

    CAS  PubMed  Google Scholar 

  23. Lasken, R. S. in Whole Genome Amplification: Methods Express Series (eds Hughes, S. & Lasken, R.) 99–118 (Scion, 2005).

    Google Scholar 

  24. Hosono, S. et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. 13, 954–964 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawkins, T. L., Detter, J. C. & Richardson, P. M. Whole genome amplification — applications and advances. Curr. Opin. Biotechnol. 13, 65–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Detter, J. C. et al. Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics 80, 691–698 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Nelson, J. R. et al. TempliPhi, φ29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Biotechniques 32 (Suppl. 1), 44–47 (2002).

    Article  Google Scholar 

  28. Lasken, R. S. Single cell genomic sequencing using multiple displacement amplification. Curr. Opin. Microbiol. 10, 1–7 (2007).

    Article  CAS  Google Scholar 

  29. Blainey, P. C. & Quake, S. R. Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39, e19 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigue, S. et al. Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4, e6864 (2009). This paper demonstrates a comprehensive workflow to carry out single-cell sequencing and genome assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, K. et al. Sequencing genomes from single cells by polymerase cloning. Nature Biotech. 24, 680–686 (2006). The first attempt to complete a bacterial genome assembly from a single cell.

    Article  CAS  Google Scholar 

  33. Hutchison, C. A., I. I. I., Smith, H. O., Pfannkoch, C. & Venter, J. C. Cell-free cloning using φ29 DNA polymerase. Proc. Natl Acad. Sci. USA 102, 17332–17336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marcy, Y. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet. 3, 1702–1708 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lasken, R. S. & Stockwell, T. B. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol. 7, 19 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lasken, R. S. et al. in Whole Genome Amplification: Methods Express Series (eds Hughes, S. & Lasken, R.) 119–147 (Scion, 2005).

    Google Scholar 

  37. Hongoh, Y. et al. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl Acad. Sci. USA 105, 5555–5560 (2008). Sequencing of an intracellular symbiotic bacteria.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS ONE 4, e5299 (2009). This paper also demonstrates a comprehensive workflow to carry out single-cell sequencing and genome assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chitsaz, H. et al. Efficient de novo assembly of bacterial genomes from single cells. Nature Biotech. 29, 915–921 (2011). A bioinformatic approach designed to improve genome assembly from amplified DNA.

    Article  CAS  Google Scholar 

  41. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kvist, T., Ahring, B. K., Lasken, R. S. & Westermann, P. Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl. Microbiol. Biotechnol. 74, 926–935 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A. & Quake, S. R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6, e16626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Podar, M. et al. Targeted access to the genomes of low abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73, 3205–3214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–118894 (2007). Reference 44 and 45 both sequenced TM7, a phylum lacking any sequenced members.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mußmann, M. et al. Insights into the genome of large sulphur bacteria revealed by analysis of single filaments. PLoS Biol. 5, e230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winogradsky, S. Beiträge zur Morphologie undPphysiologie der Bakterien. Zur Morphologie und Physiologie der Schwefelbakterien Vol. 1, 1–120 (Arthur Felix,1888).

    Google Scholar 

  48. Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Martinez-Garcia, M. et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6, 113–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Chang, H. W. et al. Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells. Environ. Sci. Technol. 42, 6058–6064 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Fleming, E. J. et al. What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH. PLoS ONE 6, e17769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ottesen, E. A., Hong, J. W., Quake, S. R. & Leadbetter, J. R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Worden, A. Z., Dupont, C. & Allen, A. E. Genomes of uncultured eukaryotes: sorting FACS from fiction. Genome Biol. 12, 117 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cuveliera, M. L. et al. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc. Natl Acad. Sci. USA 107, 14679–14684 (2010).

    Article  Google Scholar 

  58. Heywood, J. L., Sieracki, M. E., Bellows, W., Poulton, N. J. & Stepanauskas, R. Capturing diversity of marine heterotrophic protists: one cell at a time. ISME J. 5, 674–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Martinez-Garcia, M. et al. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J. 6, 703–707 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Not, F. et al. Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315, 253–255 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Grindberg, R. V. et al. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6, e1856 (2011). The use of single-cell sequencing to discover the gene cluster required for synthesis of a therapeutic agent.

    Article  CAS  Google Scholar 

  62. Siegl, A. et al. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 5, 61–70 (2011).

    Article  PubMed  Google Scholar 

  63. Ehrlich, G. D. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol. Med. Microbiol. 59, 269–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199 (2004).

    Article  CAS  Google Scholar 

  65. Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Eloe, E. A. et al. Going deeper: metagenome of a hadopelagic microbial community. PLoS ONE 6, e20388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Edwards, R. A. & Rohwer, F. Viral metagenomics. Nature Rev. Microbiol. 3, 504–510 (2005).

    Article  CAS  Google Scholar 

  71. Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Allen, L. Z. et al. Single virus genomics: a new tool for virus discovery. PLoS ONE 23, e17722 (2011).

    Article  CAS  Google Scholar 

  73. Martínez Martínez, J., Poulton, N. J., Stepanauskas, R., Sieracki, M. E. & Wilson, W. H. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi. PLoS ONE 6, e22520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Woyke, T. et al. Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6, e26161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abulencia, C. B. et al. Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl. Environ. Microbiol. 72, 3291–3301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yilmaz, S., Allgaier, M. & Hugenholtz, P. Multiple displacement amplification compromises quantitative analysis of metagenomes. Nature Methods 7, 943 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, C. H. et al. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization. Anal. Chem. 83, 7269–7275 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Pamp, S. J. et al. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res. 22, 1107–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl Acad. Sci. USA 109, 7665–7670 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dichosa, A. E. K. et al. Artificial polyploidy improves bacterial single cell genome recovery. PLoS ONE 7, e37387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE 7, e35314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mason, O. U. et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 21 Jun 2012 (doi: 10.1038/ismej.2012.59).

  83. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Peters, B. A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges C. Dupont for suggestions on metagenomics and marine communities.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

HMP MDA sequencing

Glossary

Global Ocean Sampling study

(GOS study). A global circumnavigation aboard the sailing yacht, Sorcerer II, conducted by the J. Craig Venter Institute (La Jolla, USA), with the aim of providing a comprehensive genomic survey of microbial (bacterial, archaeal and viral) life in the world's oceans.

Klenow fragment

The large fragment of Escherichia coli DNA polymerase I; this fragment has a processivity of 10 nucleotides.

Bar-coded DNA libraries

Mixed DNA libraries that are created by the addition of short DNA sequences (bar-codes) onto the DNA templates. Multiple DNA sets (for example, from different bacteria) are each tagged with a unique bar-code and then pooled for use in a single sequencing run. The sequences obtained can be separated back into the individual sets based on the bar-codes.

Chemolithoautotrophic

Pertaining to an organism: deriving energy from a chemical reaction (chemotrophic) using inorganic substrates such as nitrate, ferrous iron or sulphur as electron donors (lithotrophic), and using CO2 as the sole carbon source (autotrophic).

Pelagic

Relating to or occurring in the water column.

Mesopelagic

Typically between 200m and 1,000m below the ocean surface.

CARD–FISH

(Catalysed reporter deposition–fluorescence in situ hybridization). A method for increasing the sensitivity of FISH, for example, by using horseradish peroxidase-labelled oligonucleotide probes. The horseradish peroxidase catalyses the deposition of tyramine molecules, which results in amplification of the fluorescent signal at the site of probe hybridization.

Phycobiliproteins

Water-soluble proteins that are present in cyanobacteria and certain algae and capture light energy, which is passed on to chlorophylls during photosynthesis. Phycobiliproteins are complexes consisting of proteins and covalently bound phycobilins that act as chromophores (capturing light).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasken, R. Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10, 631–640 (2012). https://doi.org/10.1038/nrmicro2857

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2857

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research