Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The Microbial Olympics

An Erratum to this article was published on 16 July 2012

This article has been updated

Abstract

Every four years, the Olympic Games plays host to competitors who have built on their natural talent by training for many years to become the best in their chosen discipline. Similar spirit and endeavour can be found throughout the microbial world, in which every day is a competition to survive and thrive. Microorganisms are trained through evolution to become the fittest and the best adapted to a particular environmental niche or lifestyle, and to innovate when the 'rules of the game' are changed by alterations to their natural habitats. In this Essay, we honour the best competitors in the microbial world by inviting them to take part in the inaugural Microbial Olympics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 100 μm freestyle swimming.
Figure 2: The pathogen relay.

Change history

  • 16 July 2012

    In the original article, the order and citations for references 1 and 2 was incorrect. In the section Sprint, the reference citation should have been as follows: “A chant erupts from the eukaryotic crowd: “Kill the winner! Kill the winner!” (REF. 2.)”. In the reference list, references 1 and 2 were listed in the wrong order; this has now been corrected as listed below. We apologize to the authors and to readers for this error and for any confusion caused.

References

  1. Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid–vibrio symbiosis. Nature Rev. Microbiol. 2, 632–642 (2004).

    Article  CAS  Google Scholar 

  2. Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Article  Google Scholar 

  3. Cox, M. M. & Battista, J. R. Deinococcus radiodurans — the consummate survivor. Nature Rev. Microbiol. 3, 882–892 (2005).

    Article  CAS  Google Scholar 

  4. Kearns, D. B. A field guide to bacterial swarming motility. Nature Rev. Microbiol. 8, 634–644 (2010).

    Article  CAS  Google Scholar 

  5. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    Article  CAS  Google Scholar 

  6. Virji, M. Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nature Rev. Microbiol. 7, 274–286 (2009).

    Article  CAS  Google Scholar 

  7. Clauditz, A., Resch, A., Wieland, K. P., Peschel, A. & Gotz, F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74, 4950–4953 (2006).

    Article  CAS  Google Scholar 

  8. Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nature Rev. Microbiol. 6, 466–476 (2008).

    Article  CAS  Google Scholar 

  9. Mashburn, L. M., Jett, A. M., Akins, D. R. & Whiteley, M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187, 554–566 (2005).

    Article  CAS  Google Scholar 

  10. McCormick, J. K., Yarwood, J. M. & Schlievert, P. M. Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol. 55, 77–104 (2001).

    Article  CAS  Google Scholar 

  11. Bakaletz, L. O. Developing animal models for polymicrobial diseases. Nature Rev. Microbiol. 2, 552–568 (2004).

    Article  CAS  Google Scholar 

  12. Koley, D., Ramsey, M. M., Bard, A. J. & Whiteley, M. Discovery of a biofilm electrocline using real-time 3D metabolite analysis. Proc. Natl Acad. Sci. USA 108, 19996–20001 (2011).

    Article  CAS  Google Scholar 

  13. Mashburn, L. M. & Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005).

    Article  CAS  Google Scholar 

  14. Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  Google Scholar 

  15. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008).

    Article  CAS  Google Scholar 

  16. Porter, S. L. Wadhams, G. H. & Armitage, J. P. Signal processing in complex chemotaxis pathways. Nature Rev. Microbiol. 9, 153–165 (2011).

    Article  CAS  Google Scholar 

  17. Valent, B. & Khang, C. H. Recent advances in rice blast effector research. Curr. Opin. Plant Biol. 13, 434–441 (2010).

    Article  CAS  Google Scholar 

  18. Robb, E. & Barron, G. Nature's ballistic missile. Science 218, 1221–1222 (1982).

    Article  CAS  Google Scholar 

  19. Montal, M. Botulinum neurotoxin: a marvel of protein design. Annu. Rev. Biochem. 79, 591–617 (2010).

    Article  CAS  Google Scholar 

  20. Roy, B. A. Floral mimicry by a plant pathogen. Nature 362, 56–58 (1993).

    Article  Google Scholar 

  21. Raguso, R. A. & Roy, B. A. 'Floral' scent production by Puccinia rust fungi that mimic flowers. Mol. Ecol. 7, 1127–1136 (1998).

    Article  CAS  Google Scholar 

  22. van Beneden, P. Les Commensaux et les Parasites dans le Regne Animal (G. Ballière, 1875).

    Google Scholar 

  23. Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    Article  Google Scholar 

  24. Ewald, P. Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol. Syst. 14, 465–485 (1983).

    Article  Google Scholar 

  25. Ewald, P. Evolution of Infectious Disease (Oxford University Press, 1997).

    Google Scholar 

  26. Ruby, E. & Morin, J. G. Specificity of symbiosis between deep-sea fishes and psychrotrophic luminous bacteria. Deep Sea Res. 25, 161–167 (1978).

    Article  Google Scholar 

  27. Villareal, T. A., Woods, S., Moore, J. K. & Culver-Rymsza, K. Vertical migration of Rhizosolenia mats and their significance to NO3 fluxes in the central North Pacific gyre. J. Plankton Res. 18, 1103–1121 (1996).

    Article  Google Scholar 

  28. Than, K. James Cameron completes record-breaking Mariana Trench dive. National Geographic News [online] (2012).

  29. Irgens, R. L., Suzuki, I. & Staley, J. T. Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr. Microbiol. 18, 261–265 (1989).

    Article  Google Scholar 

  30. Bakermans, C. H., et al. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int. J. Syst. Evol. Microbiol. 56, 1285–1291 (2006).

    Article  CAS  Google Scholar 

  31. Amato, P., Doyle, S. M., Battista, J. R. & Christner, B. C. Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10, 789–798 (2010).

    Article  CAS  Google Scholar 

  32. Ayala-del-Río, H. L. et al. The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl. Environ. Microbiol. 76, 2304–2312 (2010).

    Article  Google Scholar 

  33. Wells, L. E. & Deming, J. W. Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat. Microb. Ecol. 45, 15–29 (2006).

    Article  Google Scholar 

  34. Junge, K., Eicken, H. & Deming, J. W. Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl. Environ. Microbiol. 69, 4282–4284 (2003).

    Article  CAS  Google Scholar 

  35. Junge, K., Eicken, Swanson, B. D. & Deming, J. W. Bacterial incorporation of leucine into protein down to −20 °C with evidence for potential activity in subeutectic saline ice formations. Cryobiology 52, 417–429 (2006).

    Article  CAS  Google Scholar 

  36. Methe, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. 102, 10913–10918 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Kamoun and S. Hogenhout are supported by The Gatsby Charitable Foundation and the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Merry Youle, Marvin Whiteley, Judith P. Armitage, Sophien Kamoun, Stephen P. Diggle, Antje Boetius or S. Craig Cary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information S1 (movie)

A movie of the 100 μm freestyle swimming. (AVI 25130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youle, M., Rohwer, F., Stacy, A. et al. The Microbial Olympics. Nat Rev Microbiol 10, 583–588 (2012). https://doi.org/10.1038/nrmicro2837

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing