Key Points
-
Many bacteria and archaea synthesize intracellular gas-filled proteinaceous structures known as gas vesicles to act as flotation devices in aqueous environments.
-
Gas vesicles provide buoyancy to cells and might help cells survive under stress conditions. Large amounts of gas vesicles reduce the size of the cytoplasm and thereby increase the cell surface-to-volume ratio. Gas vesicles add hollow spaces to the cells, and these spaces are filled, by diffusion, with gases that are dissolved in the surrounding medium; no storage of gas occurs. Gas vesicles of cyanobacteria are permeable to oxygen, nitrogen, hydrogen, carbon dioxide, carbon monoxide, methane and even perfluorocyclobutane.
-
The archaeal gas vesicle wall is formed solely of protein, and the small hydrophobic protein gas vesicle protein A (GvpA) is the main constituent. Another structural protein is GvpC, which stabilizes the wall by attaching to the outside. In the halophilic archaeon Halobacterium salinarum, 12 additional Gvp proteins are required for gas vesicle formation, two of which, GvpD and GvpE, are involved in the regulation of gvp gene expression. GvpE increases transcription by 60–100-fold, whereas GvpD acts as a sink for GvpE. High salt concentrations, high cell densities or growth at low temperatures increase the formation of archaeal gas vesicles, whereas low salt concentrations, anoxic conditions or high light intensities decrease the production of these vesicles.
-
Bacterial gvp gene clusters share many of the essential gvp genes with haloarchaea, but also contain genes with no haloarchaeal homologues. The formation of bacterial gas vesicles is influenced by cell density and light intensities.
-
The formation of the gas vesicle wall is not yet fully understood. Initial information on the structure of GvpA came from solid-NMR studies and suggests a coil–α-helix–β-strand–β-strand–α-helix–coil peptide backbone. The GvpA monomer contains an antiparallel β-sheet (formed by the two β-strands), which might be extended by antiparallel associations with the β-sheets in adjacent monomers.
Abstract
A range of bacteria and archaea produce intracellular gas-filled proteinaceous structures that function as flotation devices in order to maintain a suitable depth in the aqueous environment. The wall of these gas vesicles is freely permeable to gas molecules and is composed of a small hydrophobic protein, GvpA, which forms a single-layer wall. In addition, several minor structural, accessory or regulatory proteins are required for gas vesicle formation. In different organisms, 8–14 genes encoding gas vesicle proteins have been identified, and their expression has been shown to be regulated by environmental factors. In this Review, I describe the basic properties of gas vesicles, the genes that encode them and how their production is regulated. I also discuss the function of these vesicles and the initial attempts to exploit them for biotechnological purposes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Klebahn, H. Gasvakuolen, ein Bestandteil der Zellen der wasserblütenbildenden Phycochromaceen. Flora (Jena) 80, 241–282 (1895).
Bowen, C. C. & Jensen, T. E. Blue-green algae: fine structure of the gas vacuoles. Science 147, 1460–1461 (1965).
Petter, H. On bacteria of salted fish. Proc. Natl Acad. Sci. Amsterdam 34, 1417–1423 (1931).
Houwink, A. L. Flagella, gas vacuoles and cell wall structure in Halobacterium halobium; an electron microscope study. J. Gen. Microbiol. 15, 146–150 (1956).
Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994). An excellent review on the physical properties of gas vesicles and their functions in bacteria.
Englert, C. & Pfeifer, F. Analysis of gas vesicle gene expression in Haloferax mediterranei reveals that GvpA and GvpC are both gas vesicle structural proteins. J. Biol. Chem. 268, 9329–9336 (1993).
Halladay, J. T., Jones, J. G., Lin, F., MacDonald, A. B. & DasSarma, S. The rightward gas vesicle operon in Halobacterium plasmid pNRC100: identification of the gvpA and gvpC gene products by use of antibody probes and genetic analysis of the region downstream of gvpC. J. Bacteriol. 175, 684–692 (1993).
Hayes, P. K., Buchholz, B. & Walsby, A. E. Gas vesicles are strengthened by the outer-surface protein, GvpC. Arch. Microbiol. 157, 229–234 (1992).
Hayes, P. K., Lazarus, C. M., Bees, A., Walker, J. E. & Walsby, A. E. The protein encoded by gvpC is a minor component of gas vesicles isolated from the cyanobacteria Anabaena flos-aquae and Microcystis sp. Mol. Microbiol. 2, 545–552 (1988).
Walsby, A. E. & Hayes, P. K. The minor cyanobacterial gas vesicle protein, GvpC, is attached to the outer surface of the gas vesicle. J. Gen. Microbiol. 134, 2647–2657 (1988).
Stoeckenius, W. & Kunau, W. H. Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J. Cell Biol. 38, 337–357 (1968).
Oesterhelt, D. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8, 489–500 (1998).
Hechler, T. & Pfeifer, F. Anaerobiosis inhibits gas vesicle formation in halophilic Archaea. Mol. Microbiol. 71, 132–145 (2009).
Bleiholder, A., Frommherz, R., Teufel, K. & Pfeifer, F. Expression of multiple tfb genes in different Halobacterium salinarum strains and interaction of TFB with transcriptional activator GvpE. Arch. Microbiol. 194, 269–279 (2012).
Coker, J. A. & DasSarma, S. Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA. BMC Genet. 8, 61 (2007).
Englert, C., Horne, M. & Pfeifer, F. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet. 222, 225–232 (1990).
Mayr, A. & Pfeifer, F. The characterization of the nv-gvpACNOFGH gene cluster involved in gas vesicle formation in Natronobacterium vacuolatum. Arch. Microbiol. 168, 24–32 (1997).
Mwatha, W. E. & Grant, W. D. Natronobacterium vacuolata sp. nov, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int. J. System Bacteriol. 43, 401–404 (1993).
Bolhuis, H., te Poele, E. M. & Rodriguez-Valera, F. Isolation and cultivation of Walsby's square archaeon. Environ. Microbiol. 6, 1287–1291 (2004).
Burns, D. G., Camakaris, H. M., Janssen, P. H. & Dyall-Smith, M. L. Cultivation of Walsby's square haloarchaeon. FEMS Microbiol. Lett. 238, 469–473 (2004).
Parkes, K. & Walsby, A. E. Ultrastructure of a gas-vacuolate square bacterium. J. Gen. Microbiol. 126, 503–506 (1981).
Oren, A., Pri-El, N., Shapiro, O. & Siboni, N. Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds. Saline Systems 2, 4 (2006).
Oliver, R. L. & Walsby, A. E. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (Cyanobacteria). Limnol. Oceanogr. 29, 879–886 (1984).
Thomas, R. H. & Walsby, A. E. Buoyancy regulation in a strain of Microcystis. J. Gen. Microbiol. 131, 799–809 (1985).
Overmann, J., Lehmann, S. & Pfennig, N. Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch. Microbiol. 157, 29–37 (1991).
Clark, A. E. & Walsby, A. E. Development and vertical distribution of populations of gas-vacuolate bacteria in an eutrophic, monomictic lake. Arch. Microbiol. 118, 229–233 (1978).
Walsby, A. E. & Hayes, P. K. Gas vesicle proteins. Biochem. J. 264, 313–322 (1989).
Gosink, J. J., Herwig, R. P. & Staley, J. T. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst. Appl. Microbiol. 20, 512–512 (1997).
Jung, D. O., Achenbach, L. A., Karr, E. A., Takaichi, S. & Madigan, M. T. A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch. Microbiol. 182, 236–243 (2004).
Staley, J. T., Irgens, R. L. & Herwig, R. P. Gas vacuolate bacteria from the sea ice of Antarctica. Appl. Environ. Microbiol. 55, 1033–1036 (1989).
Isaksen, M. F. & Teske, A. Desulforhopalus vacuolatus gen nov, sp nov, a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166, 160–168 (1996).
Irgens, R. L., Suzuki, I. & Staley, J. T. Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr. Microbiol. 18, 261–265 (1989).
Konopka, A. E., Lara, J. C. & Staley, J. T. Isolation and characterization of gas vesicles from Microcyclus aquaticus. Arch. Microbiol. 112, 133–140 (1977).
Staley, J. T. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95, 1921–1942 (1968).
Staley, J. T., Irgens, R. L. & Brenner, D. J. Enhydrobacter aerosaccus gen. nov., sp. nov, a gas-vacuolated, facultatively anaerobic, heterotrophic rod. Int. J. Syst. Bacteriol. 37, 289–291 (1987).
van Ert, M. & Staley, J. T. New gas vacuolated heterotrophic rod from freshwaters. Arch. Mikrobiol. 80, 70–77 (1971).
Oren, A. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136, 42–48 (1983).
Widdel, F. & Pfennig, N. A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112, 119–122 (1977).
Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).
Ramsay, J. P., Williamson, N. R., Spring, D. R. & Salmond, G. P. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium. Proc. Natl Acad. Sci. USA 108, 14932–14937 (2011).
Damerval, T., Houmard, J., Guglielmi, G., Csiszar, K. & Tandeau de Marsac, N. A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix 7601. Gene 54, 83–92 (1987).
Tandeau de Marsac, N., Mazel, D., Bryant, D. A. & Houmard, J. Molecular cloning and nucleotide sequence of a developmentally regulated gene from the cyanobacterium Calothrix PCC 7601: a gas vesicle protein gene. Nucleic Acids Res. 13, 7223–7236 (1985).
Walker, J. E. & Walsby, A. E. Molecular weight of gas vesicle protein from the planktonic cyanobacterium Anabaena flos-aquae and implications for structure of the vesicle. Biochem. J. 209, 809–815 (1983).
DasSarma, S., Damerval, T., Jones, J. G. & Tandeau de Marsac, N. A plasmid-encoded gas vesicle protein gene in a halophilic archaebacterium. Mol. Microbiol. 1, 365–370 (1987).
Horne, M., Englert, C. & Pfeifer, F. Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol. Gen. Genet. 213, 459–464 (1988).
Horne, M. & Pfeifer, F. Expression of two gas vacuole protein genes in Halobacterium halobium and other related species. Mol. Gen. Genet. 218, 437–444 (1989).
Englert, C., Krüger, K., Offner, S. & Pfeifer, F. Three different but related gene clusters encoding gas vesicles in halophilic archaea. J. Mol. Biol. 227, 586–592 (1992).
Ng, W. V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl Acad. Sci. USA 97, 12176–12181 (2000).
Krüger, K. & Pfeifer, F. Transcript analysis of the c-vac region and differential synthesis of the two regulatory gas vesicle proteins GvpD and GvpE in Halobacterium salinarium PHH4. J. Bacteriol. 178, 4012–4019 (1996).
Ng, W. L., Kothakota, S. & DasSarma, S. Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J. Bacteriol. 173, 1958–1964 (1991).
Bauer, M. et al. Overlapping activator sequences determined for two oppositely oriented promoters in halophilic Archaea. Nucleic Acids Res. 36, 598–606 (2008).
Englert, C., Wanner, G. & Pfeifer, F. Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product. Mol. Microbiol. 6, 3543–3550 (1992).
Röder, R. & Pfeifer, F. Influence of salt on the transcription of the gas-vesicle genes of Haloferax mediterranei and identification of the endogenous transcriptional activator gene. Microbiology 142, 1715–1723 (1996).
Gregor, D. & Pfeifer, F. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiology 147, 1745–1754 (2001).
Gregor, D. & Pfeifer, F. In vivo analyses of constitutive and regulated promoters in halophilic archaea. Microbiology 151, 25–33 (2005).
Hofacker, A., Schmitz, K. M., Cichonczyk, A., Sartorius-Neef, S. & Pfeifer, F. GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum. Microbiology 150, 1829–1838 (2004).
Teufel, K. & Pfeifer, F. Interaction of transcription activator GvpE with TATA-box-binding proteins of Halobacterium salinarum. Arch. Microbiol. 192, 143–149 (2010).
Scheuch, S., Marschaus, L., Sartorius-Neef, S. & Pfeifer, F. Regulation of gvp genes encoding gas vesicle proteins in halophilic Archaea. Arch. Microbiol. 190, 333–339 (2008).
Scheuch, S. & Pfeifer, F. GvpD-induced breakdown of the transcriptional activator GvpE of halophilic archaea requires a functional p-loop and an arginine-rich region of GvpD. Microbiology 153, 947–958 (2007).
Zimmermann, P. & Pfeifer, F. Regulation of the expression of gas vesicle genes in Haloferax mediterranei: interaction of the two regulatory proteins GvpD and GvpE. Mol. Microbiol. 49, 783–794 (2003).
Offner, S., Hofacker, A., Wanner, G. & Pfeifer, F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J. Bacteriol. 182, 4328–4336 (2000).
Offner, S., Wanner, G. & Pfeifer, F. Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles. J. Bacteriol. 178, 2071–2078 (1996).
Chu, L. J. et al. New structural proteins of Halobacterium salinarum gas vesicle revealed by comparative proteomics analysis. J. Proteome Res. 10, 1170–1178 (2011).
Shukla, H. D. & DasSarma, S. Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J. Bacteriol. 186, 3182–3186 (2004).
Strunk, T. et al. Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo. Mol. Microbiol. 81, 56–68 (2011).
Beard, S. J., Davis, P. A., Iglesias-Rodriguez, D., Skulberg, O. M. & Walsby, A. E. Gas vesicle genes in Planktothrix spp. from Nordic lakes: strains with weak gas vesicles possess a longer variant of gvpC. Microbiology 146, 2009–2018 (2000).
Beard, S. J., Handley, B. A. & Walsby, A. E. Spontaneous mutations in gas vesicle genes of Planktothrix spp. affect gas vesicle production and critical pressure. FEMS Microbiol. Lett. 215, 189–195 (2002).
Hayes, P. K. & Powell, R. S. The gvpA/C cluster of Anabaena flos-aquae has multiple copies of a gene encoding GvpA. Arch. Microbiol. 164, 50–57 (1995).
Kinsman, R. & Hayes, P. K. Genes encoding proteins homologous to halobacterial Gvps N, J, K, F & L are located downstream of gvpC in the cyanobacterium Anabaena flos-aquae. DNA Seq. 7, 97–106 (1997).
Mlouka, A., Comte, K., Castets, A. M., Bouchier, C. & Tandeau de Marsac, N. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J. Bacteriol. 186, 2355–2365 (2004).
van Keulen, G., Hopwood, D. A., Dijkhuizen, L. & Sawers, R. G. Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol. 13, 350–354 (2005).
Walsby, A. E. & Dunton, P. G. Gas vesicles in actinomycetes? Trends Microbiol. 14, 99–100 (2006).
Lee, E. J. et al. A master regulator σB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 57, 1252–1264 (2005).
Bright, D. I. & Walsby, A. E. The relationship between critical pressure and width of gas vesicles in isolates of Planktothrix rubescens from Lake Zurich. Microbiology 145, 2769–2775 (1999).
Jones, D. D. & Jost, M. Characterization of the protein from gas vesicles membranes of the blue-green algae Microcystis aeruginosa. Planta 100, 277–287 (1971).
Offner, S., Ziese, U., Wanner, G., Typke, D. & Pfeifer, F. Structural characteristics of halobacterial gas vesicles. Microbiology 144, 1331–1342 (1998).
McMaster, T. J., Miles, M. J. & Walsby, A. E. Direct observation of protein secondary structure in gas vesicles by atomic force microscopy. Biophys. J. 70, 2432–2436 (1996).
Blaurock, A. E. & Walsby, A. E. Crystalline structure of the gas vesicle wall from Anabaena flos-aquae. J. Mol. Biol. 105, 183–199 (1976).
Belenky, M., Meyers, R. & Herzfeld, J. Subunit structure of gas vesicles: a MALDI-TOF mass spectrometry study. Biophys. J. 86, 499–505 (2004).
Bayro, M. J., Daviso, E., Belenky, M., Griffin, R. G. & Herzfeld, J. An amyloid organelle: solid state NMR evidence for cross-beta assembly of gas vesicles. J. Biol. Chem. 287, 3479–3484 (2011).
Sivertsen, A. C., Bayro, M. J., Belenky, M., Griffin, R. G. & Herzfeld, J. Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles. J. Mol. Biol. 387, 1032–1039 (2009).
Sivertsen, A. C., Bayro, M. J., Belenky, M., Griffin, R. G. & Herzfeld, J. Solid-state NMR characterization of gas vesicle structure. Biophys. J. 99, 1932–1939 (2010).
Buchholz, B. E., Hayes, P. K. & Walsby, A. E. The distribution of the outer gas vesicle protein, GvpC, on the Anabaena gas vesicle, and its ratio to GvpA. J. Gen. Microbiol. 139, 2353–2363 (1993).
Kinsman, R., Walsby, A. E. & Hayes, P. K. GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol. Microbiol. 17, 147–154 (1995).
Dunton, P. G., Mawby, W. J., Shaw, V. A. & Walsby, A. E. Analysis of tryptic digests indicates regions of GvpC that bind to gas vesicles of Anabaena flos-aquae. Microbiology 152, 1661–1669 (2006).
Horne, M., Englert, C., Wimmer, C. & Pfeifer, F. A. DNA region of 9 kbp contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Mol. Microbiol. 5, 1159–1174 (1991).
Offner, S. & Pfeifer, F. Complementation studies with the gas vesicle-encoding p-vac region of Halobacterium salinarium PHH1 reveal a regulatory role for the p-gvpDE genes. Mol. Microbiol. 16, 9–19 (1995).
Jäger, A., Samorski, R., Pfeifer, F. & Klug, G. Individual gvp transcript segments in Haloferax mediterranei exhibit varying half-lives, which are differentially affected by salt concentration and growth phase. Nucleic Acids Res. 30, 5436–5443 (2002).
Csiszar, K., Houmard, J., Damerval, T. & Tandeau de Marsac, N. Transcriptional analysis of the cyanobacterial gvpABC operon in differentiated cells: occurrence of an antisense RNA complementary to three overlapping transcripts. Gene 60, 29–37 (1987).
Sremac, M. & Stuart, E. S. Recombinant gas vesicles from Halobacterium sp. displaying SIV peptides demonstrate biotechnology potential as a pathogen peptide delivery vehicle. BMC Biotechnol. 8, 9 (2008).
Sremac, M. & Stuart, E. S. SIVsm Tat, Rev, and Nef1: functional characteristics of r-GV internalization on isotypes, cytokines, and intracellular degradation. BMC Biotechnol. 10, 54 (2010).
Stuart, E. S., Morshed, F. Sremac, M. & DasSarma, S. Antigen presentation using novel particulate organelles from halophilic archaea. J. Biotechnol. 88, 119–128 (2001).
Stuart, E. S., Morshed, F. Sremac, M. & DasSarma, S. Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J. Biotechnol. 114, 225–237 (2004).
Sundararajan, A. & Ju, L. K. Evaluation of oxygen permeability of gas vesicles from cyanobacterium Anabaena flos-aquae. J. Biotechnol. 77, 151–156 (2000).
Sundararajan, A. & Ju, L. K. Use of cyanobacterial gas vesicles as oxygen carriers in cell culture. Cytotechnology 52, 139–149 (2006).
Walsby, A. E. Permeability of gas vesicles to perfluorocyclobutane. J. Gen. Microbiol. 128, 1679–1684 (1982).
Walsby, A. E., Revsbech, N. P. & Griffel, D. H. The gas permeability coefficient of the cyanobacterial gas vesicle wall. J. Gen. Microbiol. 138, 837–845 (1992).
Pfeifer, F. & Blaseio, U. Insertion elements and deletion formation in a halophilic archaebacterium. J. Bacteriol. 171, 5135–5140 (1989).
DasSarma, S. Identification and analysis of the gas vesicle gene cluster on an unstable plasmid of Halobacterium halobium. Experientia 49, 482–486 (1993).
Acknowledgements
Research in the F.P. laboratory is supported by grants from the German Research Foundation (DFG). The author thanks A. Walsby for helpful comments on the manuscript, and A. Kletzin for discussions, help with the comparison of gvp gene clusters and critical reading of the manuscript.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Glossary
- Halophilic
-
Pertaining to microorganisms: salt-loving, living at 2–5 M sodium chloride at neutral pH.
- Biconical
-
Pertaining to a three-dimensional geometric structure: formed by merging two conical ends.
- Anoxygenic photosynthetic
-
Pertaining to microorganisms: unable to form oxygen owing to the lack of photosystem II.
- Heterotrophic
-
Pertaining to microorganisms: using organic carbon sources.
- Pellicle
-
A thin layer of microorganisms at the air–liquid surface.
- Anoxic
-
Without oxygen.
- Haloalkaliphilic
-
Pertaining to microorganisms: high-salt and high-pH loving, living at 2–5 M salt and pH 9–11.
- Hypersaline
-
With a salt concentration surpassing that of the ocean water (>4% weight per volume).
- Brackish
-
With a salt concentration between that of fresh water and ocean water.
- Sporulation
-
The process of endospore formation in microorganisms.
- Mini-chromosome
-
A piece of circular DNA that occurs in addition to the main chromosome and contains essential genes (such as tRNA genes) which are required to survive.
- Insertion element
-
A transposable DNA sequence (0.5–2 kb) that is able to replicate and insert into another position in the chromosome.
- Quorum sensing
-
A chemical communication system that uses small signal molecules to measure cell densities and coordinate the regulation of gene expression in certain bacteria and archaea.
- Mycelium
-
The thread-like cells of Streptomyces spp.; these cells resemble the vegetative hyphae of fungi.
- Antigen presentation system
-
A system of proteins that are engineered to display antigens to the immune system of mice or other animals.
Rights and permissions
About this article
Cite this article
Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat Rev Microbiol 10, 705–715 (2012). https://doi.org/10.1038/nrmicro2834
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2834
This article is cited by
-
Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria
Nature Biotechnology (2023)
-
A novel recombinant chimeric bio-adhesive protein consisting of mussel foot protein 3, 5, gas vesicle protein A, and CsgA curli protein expressed in Pichia pastoris
AMB Express (2022)
-
Transcriptional response of Microcystis aeruginosa to the recruitment promoting-benthic bacteria
Journal of Oceanology and Limnology (2022)
-
Cyanobacteria species dominance and diversity in three Australian drinking water reservoirs
Hydrobiologia (2022)
-
Tidal water exchanges can shape the phytoplankton community structure and reduce the risk of harmful cyanobacterial blooms in a semi-closed lake
Journal of Oceanology and Limnology (2022)