Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replication–transcription conflicts in bacteria

Key Points

  • DNA replication and transcription share the same DNA template. Encounters between the replication and transcription machineries can lead to conflicts that result in disruption of replication, genome instability and reduced fitness.

  • Replication–transcription conflicts can occur both at DNA lesions or independently of DNA lesions under stress conditions.

  • Replication–transcription conflicts can occur when replication and transcription are co-directional (when genes are encoded on the leading strand), but are more severe when transcription is oriented head-on to replication (when genes are encoded on the lagging strand).

  • Bacteria use various mechanisms to prevent replication–transcription conflicts from occurring and to resolve conflicts that have occurred by repairing and restarting stalled replication forks.

  • Factors involved in avoiding and resolving replication–transcription conflicts include evolutionary pressures on genome organization that favour genes on the leading strand, accessory helicases, and modulators of transcription and translation.

Abstract

DNA replication and transcription use the same template and occur concurrently in bacteria. The lack of temporal and spatial separation of these two processes leads to their conflict, and failure to deal with this conflict can result in genome alterations and reduced fitness. In recent years major advances have been made in understanding how cells avoid conflicts between replication and transcription and how such conflicts are resolved when they do occur. In this Review, we summarize these findings, which shed light on the significance of the problem and on how bacterial cells deal with unwanted encounters between the replication and transcription machineries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial replication and replication–transcription conflicts.
Figure 2: Representative mechanisms of avoiding and resolving replication–transcription conflicts.
Figure 3: Possible fates of a replication fork that has stalled owing to conflicts with transcription.

Similar content being viewed by others

References

  1. McHenry, C. S. DNA replicases from a bacterial perspective. Annu. Rev. Biochem. 80, 403–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kornberg, A. & Baker, T. A. DNA Replication (W. H. Freeman and Co., 1992).

    Google Scholar 

  3. Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in Escherichia coli plasmids. Mol. Microbiol. 17, 493–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trautinger, B. W., Jaktaji, R. P., Rusakova, E. & Lloyd, R. G. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19, 247–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Tehranchi, A. K. et al. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141, 595–605 (2010). Pioneering work providing evidence for the function of RNAP modulators and DNA repair proteins in preventing and/or resolving replication–transcription conflicts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brewer, B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Srivatsan, A., Tehranchi, A., MacAlpine, D. M. & Wang, J. D. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 6, e1000810 (2010). A report which shows that head-on transcription at rrn genes is more deleterious than at other genes in B. subtilis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Merrikh, H., Machón, C., Grainger, W. H., Grossman, A. D. & Soultanas, P. Co-directional replication-transcription conflicts lead to replication restart. Nature 470, 554–557 (2011). A study which finds that co-directional conflicts at highly transcribed rRNA genes can stall replication in vivo in B. subtilis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dutta, D., Shatalin, K., Epshtein, V., Gottesman, M. E. & Nudler, E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146, 533–543 (2011). This work indicates that factors which influence RNAP backtracking on a plasmid can affect replication and cause breaks co-directionally.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goranov, A. I., Breier, A. M., Merrikh, H. & Grossman, A. D. YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress. Mol. Microbiol. 74, 454–466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su'etsugu, M. & Errington, J. The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. Mol. Cell 41, 720–732 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. French, S. Consequences of replication fork movement through transcription units in vivo. Science 258, 1362–1365 (1992). The first report to show that replication–transcription conflicts occur in vivo . This study uses electron microscopy to find that RNAPs are dislodged during the conflicts and that replication is slowed during head-on conflicts.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, B. & Alberts, B. M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131–1137 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Mirkin, E. V. & Mirkin, S. M. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25, 888–895 (2005). Using an in vivo plasmid system combined with two-dimensional gels, this work demonstrates that replication stalling in E. coli can be induced by strong head-on transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J. D., Berkmen, M. B. & Grossman, A. D. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 5608–5613 (2007). An investigation which shows that transcription slows replication elongation within an inverted large genomic segment in B. subtilis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boubakri, H., de Septenville, A. L., Viguera, E. & Michel, B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 29, 145–157 (2010). This report demonstrates that the accessory helicases UvrD, Rep and DinG are crucial for the movement of replication forks through highly transcribed transcription units.

    Article  CAS  PubMed  Google Scholar 

  18. Pomerantz, R. T. & O'Donnell, M. What happens when replication and transcription complexes collide? Cell Cycle 9, 2537–2543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill, C. W. & Gray, J. A. Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119, 771–778 (1988). An early experimental indication that gene orientation on the chromosome contributes to fitness.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in plasmid vectors: M13 DNA replication as a source of instability. Mol. Gen. Genet. 252, 398–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Mirkin, E. V., Castro Roa, D., Nudler, E. & Mirkin, S. M. Transcription regulatory elements are punctuation marks for DNA replication. Proc. Natl Acad. Sci. USA 103, 7276–7281 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rudolph, C. J., Dhillon, P., Moore, T. & Lloyd, R. G. Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair (Amst.) 6, 981–993 (2007).

    Article  CAS  Google Scholar 

  24. Olavarrieta, L., Hernandez, P., Krimer, D. B. & Schvartzman, J. B. DNA knotting caused by head-on collision of transcription and replication. J. Mol. Biol. 322, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Elias-Arnanz, M. & Salas, M. Bacteriophage φ29 DNA replication arrest caused by codirectional collisions with the transcription machinery. EMBO J. 16, 5775–5783 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pomerantz, R. T. & O'Donnell, M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456, 762–766 (2008). An in vitro study showing that when replication and transcription machineries collide co-directionally, the replisome can remain associated with DNA and use mRNA as a primer to restart replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pomerantz, R. T. & O'Donnell, M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327, 590–592 (2010). This in vitro study finds that the replisome can remain stably associated with DNA when it collides with a head-on transcription complex and that replication can restart without additional factors after RNAP is removed by Mfd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunst, F. et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. McLean, M. J., Wolfe, K. H. & Devine, K. M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47, 691–696 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Rocha, E. P. & Danchin, A. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res. 31, 6570–6577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocha, E. P. & Danchin, A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nature Genet. 34, 377–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Guy, L. & Roten, C. A. Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene 340, 45–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Price, M. N., Alm, E. J. & Arkin, A. P. Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication. Nucleic Acids Res. 33, 3224–3234 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Withey, J. H. & Friedman, D. I. A salvage pathway for protein structures: tmRNA and trans-translation. Annu. Rev. Microbiol. 57, 101–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, N., Abdulovic, A. L., Gealy, R., Lippert, M. J. & Jinks-Robertson, S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst.) 6, 1285–1296 (2007).

    Article  CAS  Google Scholar 

  37. Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie 81, 139–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Selby, C. P. & Sancar, A. Molecular mechanism of transcription-repair coupling. Science 260, 53–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Park, J. S., Marr, M. T. & Roberts, J. W. E. colit transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Stebbins, C. E. et al. Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature 373, 636–640 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114, 335–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Perederina, A. et al. Regulation through the secondary channel–structural framework for ppGpp-DksA synergism during transcription. Cell 118, 297–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA–DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Komissarova, N. & Kashlev, M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl Acad. Sci. USA 94, 1755–1760 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borukhov, S., Sagitov, V. & Goldfarb, A. Transcript cleavage factors from E. coli. Cell 72, 459–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322–6334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toulme, F. et al. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19, 6853–6859 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marr, M. T. & Roberts, J. W. Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol. Cell 6, 1275–1285 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Stallings, C. L. et al. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138, 146–159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gomez-Gonzalez, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30, 3106–3119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Itoh, T. & Tomizawa, J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc. Natl Acad. Sci. USA 77, 2450–2454 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Asai, T. & Kogoma, T. The RecF pathway of homologous recombination can mediate the initiation of DNA damage-inducible replication of the Escherichia coli chromosome. J. Bacteriol. 176, 7113–7114 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kogoma, T. Escherichia coli RNA polymerase mutants that enhance or diminish the SOS response constitutively expressed in the absence of RNase HI activity. J. Bacteriol. 176, 1521–1523 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, X. & Manley, J. L. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838–1847 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Gowrishankar, J. & Harinarayanan, R. Why is transcription coupled to translation in bacteria? Mol. Microbiol. 54, 598–603 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Voloshin, O. N. & Camerini-Otero, R. D. The DinG protein from Escherichia coli is a structure-specific helicase. J. Biol. Chem. 282, 18437–18447 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Masse, E. & Drolet, M. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J. Biol. Chem. 274, 16659–16664 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Drolet, M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol. Microbiol. 59, 723–730 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Baharoglu, Z., Lestini, R., Duigou, S. & Michel, B. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases. Mol. Microbiol. 77, 324–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richardson, J. P. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Harinarayanan, R. & Gowrishankar, J. Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J. Mol. Biol. 332, 31–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Washburn, R. S. & Gottesman, M. E. Transcription termination maintains chromosome integrity. Proc. Natl Acad. Sci. USA 108, 792–797 (2011). This work shows that factors which influence RNAP termination can affect replication and chromosome integrity.

    Article  CAS  PubMed  Google Scholar 

  67. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bedinger, P., Hochstrasser, M., Jongeneel, C. V. & Alberts, B. M. Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34, 115–123 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. Boule, J. B. & Zakian, V. A. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34, 4147–4153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Esnault, E., Valens, M., Espeli, O. & Boccard, F. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet. 3, e226 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yarranton, G. T. & Gefter, M. L. Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. Proc. Natl Acad. Sci. USA 76, 1658–1662 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lane, H. E. & Denhardt, D. T. The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J. Mol. Biol. 97, 99–112 (1975).

    Article  CAS  PubMed  Google Scholar 

  74. Petit, M. A. et al. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol. Microbiol. 29, 261–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Lestini, R. & Michel, B. UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli. J. Bacteriol. 190, 5995–6001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guy, C. P. et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol. Cell 36, 654–666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bidnenko, V., Lestini, R. & Michel, B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol. Microbiol. 62, 382–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Veaute, X. et al. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 24, 180–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Atkinson, J. et al. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res. 39, 949–957 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Petit, M. A. & Ehrlich, D. Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J. 21, 3137–3147 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Flores, M. J., Sanchez, N. & Michel, B. A fork-clearing role for UvrD. Mol. Microbiol. 57, 1664–1675 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lestini, R. & Michel, B. UvrD controls the access of recombination proteins to blocked replication forks. EMBO J. 26, 3804–3814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Centore, R. C. & Sandler, S. J. UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12. J. Bacteriol. 189, 2915–2920 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anand, S. P., Zheng, H., Bianco, P. R., Leuba, S. H. & Khan, S. A. DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J. Bacteriol. 189, 4502–4509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, J. et al. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142, 544–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Noirot-Gros, M. F. et al. An expanded view of bacterial DNA replication. Proc. Natl Acad. Sci. USA 99, 8342–8347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Delumeau, O. et al. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics 11, 2992–3001 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Nurse, P., DiGate, R. J., Zavitz, K. H. & Marians, K. J. Molecular cloning and DNA sequence analysis of Escherichia coli priA, the gene encoding the primosomal protein replication factor Y. Proc. Natl Acad. Sci. USA 87, 4615–4619 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de Septenville, A. L., Duigou, S., Boubakri, H. & Michel, B. Replication fork reversal after replication–transcription collision. PLoS Genet 8, e1002622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duggin, I. G. & Wake, R. G. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 87–95 (American Society for Microbiology Press, 2002).

    Book  Google Scholar 

  91. Lin, Y., Gao, F. & Zhang, C. T. Functionality of essential genes drives gene strand-bias in bacterial genomes. Biochem. Biophys. Res. Commun. 396, 472–476 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. S. Thirupathy for comments on the manuscript. Work on replication–transcription conflicts in the J.D.W. laboratory was supported, in part, by grant GM084003, and work in the A.D.G. laboratory was supported, in part, by grant GM41934, both from the US National Institutes of Health (NIH). H.M. was supported, in part, by postdoctoral fellowship GM093408 from the NIH and by funds from the University of Washington, Seattle, USA, and its Department of Microbiology. Y.Z. was supported, in part, by grant RP101499 from the Cancer Prevention Research Institute of Texas (CPRIT) Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan D. Grossman or Jue D. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Alan D. Grossman's homepage

Jue D. Wang's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrikh, H., Zhang, Y., Grossman, A. et al. Replication–transcription conflicts in bacteria. Nat Rev Microbiol 10, 449–458 (2012). https://doi.org/10.1038/nrmicro2800

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing