The rise of the Enterococcus: beyond vancomycin resistance


The genus Enterococcus includes some of the most important nosocomial multidrug-resistant organisms, and these pathogens usually affect patients who are debilitated by other, concurrent illnesses and undergoing prolonged hospitalization. This Review discusses the factors involved in the changing epidemiology of enterococcal infections, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem. The effects of antibiotics on the gut microbiota and on colonization with vancomycin-resistant enterococci are highlighted, including how enterococci benefit from the antibiotic-mediated eradication of Gram-negative members of the gut microbiota. Analyses of enterococcal genomes indicate that there are certain genetic lineages, including an E. faecium clade of ancient origin, with the ability to succeed in the hospital environment, and the possible virulence determinants that are found in these genetic lineages are discussed. Finally, we review the most important mechanisms of resistance to the antibiotics that are used to treat vancomycin-resistant enterococci.

Key Points

  • Enterococci are some of the most versatile organisms found to infect hospitalized patients. The epidemiology of enterococcal infections has evolved since the emergence of these pathogens and has seen the rise of Enterococcus faecium as a nosocomial pathogen with serious clinical implications.

  • The effect of antibiotics on the microbiota of the gastrointestinal tract and subsequent alterations in the regulation of the gut immune system can favour colonization by multidrug-resistant enterococci.

  • Enterococcal genomes are extremely malleable, with the ability to exchange large fragments of chromosomal DNA. In addition, the lack of CRISPR (clustered regularly interspaced short palindromic repeats) elements has a potential role in the adaptation of hospital-associated enterococci.

  • Specific pathogenicity factors contribute to the ability of enterococci to produce disease and/or survive in the gastrointestinal tract of mammals. The major factors include secreted and cell surface-associated determinants.

  • Antibiotic resistance is widespread for the anti-enterococcal antibiotics that are most commonly used in clinical practice, and the mechanisms of resistance for many of these antibiotics are known. These antibiotics include ampicillin, linezolid, daptomycin and quinupristin–dalfopristin, and there is also high-level resistance to aminoglycosides. Such resistances have important therapeutic implications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The crucial role of the gastrointestinal tract in enterococcal infection and spread.
Figure 2: The effects of antibiotic administration on the gastrointestinal microbiota and the emergence of vancomycin-resistant enterococci.
Figure 3: Major routes of nosocomial transmission of vancomycin-resistant enterococci.
Figure 4: Main mechanisms of enterococcal antibiotic resistance.


  1. 1

    MacCallum, W. G. & Hastings, T. W. A case of acute endocarditis caused by Micrococcus zymogenes (nov. spec.), with a description of the microorganism. J. Exp. Med. 4, 521–534 (1899). The first clinical and pathological description of enterococcal disease.

  2. 2

    Arias, C. A. & Murray, B. E. Emergence and management of drug-resistant enterococcal infections. Expert Rev. Anti Infect. Ther. 6, 637–655 (2008). An extensive review of the treatment of enterococcal infections.

  3. 3

    Arias, C. A. & Murray, B. E. in Harrison's Principles of Internal Medicine (eds Longo, D. L. et al.) 1180–1186 (McGraw Hill, New York, 2011).

  4. 4

    Hidron, A. I. et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 29, 996–1011 (2008).

  5. 5

    Murray, B. E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 3, 46–65 (1990).

  6. 6

    Willems, R. J. & van Schaik, W. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol. 4, 1125–1135 (2009). A review of the evolution and population genetics of E. faecium.

  7. 7

    Ramsey, A. M. & Zilberberg, M. D. Secular trends of hospitalization with vancomycin-resistant Enterococcus infection in the United States, 2000–2006. Infect. Control Hosp. Epidemiol. 30, 184–186 (2009).

  8. 8

    Werner, G. et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 13, 19046 (2008).

  9. 9

    Top, J., Willems, R., van der Velden, S., Asbroek, M. & Bonten, M. Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J. Clin. Microbiol. 46, 214–219 (2008).

  10. 10

    Soderblom, T. et al. Alarming spread of vancomycin resistant enterococci in Sweden since 2007. Euro Surveill. 15, pii:19629 (2010).

  11. 11

    Panesso, D. et al. Molecular epidemiology of vancomycin-resistant Enterococcus faecium: a prospective, multicenter study in South American hospitals. J. Clin. Microbiol. 48, 1562–1569 (2010).

  12. 12

    Liu, Y., Cao, B., Gu, L. & Wang, H. Molecular characterization of vancomycin-resistant enterococci in a Chinese hospital between 2003 and 2009. Microb. Drug Resist. 17, 449–455 (2011).

  13. 13

    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

  14. 14

    Donskey, C. J. et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932 (2000).

  15. 15

    Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010). A study that shows the direct effect of antibiotics on colonization by VRE, and the predisposition of patients colonized by VRE to develop bloodstream infections.

  16. 16

    Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008). The first description of REGIIIγ as an important modulator of the immune response against enterococci.

  17. 17

    Kinnebrew, M. A. et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 201, 534–543 (2010).

  18. 18

    Bradley, C. R. & Fraise, A. P. Heat and chemical resistance of enterococci. J. Hosp. Infect. 34, 191–196 (1996).

  19. 19

    Sydnor, E. R. & Perl, T. M. Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 24, 141–173 (2011).

  20. 20

    Austin, D. J., Bonten, M. J., Weinstein, R. A., Slaughter, S. & Anderson, R. M. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc. Natl Acad. Sci. USA 96, 6908–6913 (1999).

  21. 21

    Muto, C. A. et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect. Control Hosp. Epidemiol. 24, 362–386 (2003).

  22. 22

    Murray, B. E. et al. Evidence for clonal spread of a single strain of β-lactamse producing Enterococcus (Streptococcus) faecalis to six hospitals in five states. J. Infect. Dis. 163, 780–785 (1991).

  23. 23

    Miranda, A. G., Singh, K. V. & Murray, B. E. DNA fingerprinting of Enterococcus faecium by pulsed-field gel electrophoresis may be a useful epidemiologic tool. J. Clin. Microbiol. 29, 2752–2757 (1991).

  24. 24

    van Schaik, W. & Willems, R. J. Genome-based insights into the evolution of enterococci. Clin. Microbiol. Infect. 16, 527–532 (2010).

  25. 25

    Ruiz-Garbajosa, P. et al. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J. Clin. Microbiol. 44, 2220–2228 (2006).

  26. 26

    Willems, R. J. et al. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg. Infect. Dis. 11, 821–828 (2005).

  27. 27

    Werner, G. et al. IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect. Dis. 11, 80 (2011).

  28. 28

    van Schaik, W. et al. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 11, 239 (2010).

  29. 29

    Galloway-Pena, J. R., Roh, J. H., Latorre, M., Qin, X. & Murray, B. E. Genomic, SNP, and 16S rRNA analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS ONE 7, e30187 (2012).

  30. 30

    Galloway-Pena, J. R., Rice, L. B. & Murray, B. E. Analysis of PBP5 of early U.S. isolates of Enterococcus faecium: sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob. Agents Chemother. 55, 3272–3277 (2011).

  31. 31

    Paulsen, I. T. et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299, 2071–2074 (2003). The first report of closed whole-genome sequencing of an E. faecalis isolate.

  32. 32

    Bourgogne, A. et al. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 9, R110 (2008).

  33. 33

    Hegstad, K., Mikalsen, T., Coque, T. M., Werner, G. & Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 16, 541–554 (2010).

  34. 34

    Willems, R. J., Hanage, W. P., Bessen, D. E. & Feil, E. J. Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35, 872–900 (2011).

  35. 35

    Leavis, H. L. et al. Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. PLoS Pathog. 3, e7 (2007).

  36. 36

    Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).

  37. 37

    Palmer, K. L. et al. High-quality draft genome sequences of 28 Enterococcus sp. isolates. J. Bacteriol. 192, 2469–2470 (2010).

  38. 38

    Manson, J. M., Hancock, L. E. & Gilmore, M. S. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc. Natl Acad. Sci. USA 107, 12269–12274 (2010). A paper describing the mechanism by which large fragments of chromosomal DNA are transferred between enterococcal strains to produce 'hybrid' strains.

  39. 39

    Palmer, K. L., Kos, V. N. & Gilmore, M. S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 13, 632–639 (2010).

  40. 40

    Palmer, K. L. & Gilmore, M. S. Multidrug-resistant enterococci lack CRISPR-cas. mBio 1, e00227-10 (2010).

  41. 41

    Booth, M. C. et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol. Microbiol. 21, 1175–1184 (1996).

  42. 42

    Segarra, R. A., Booth, M. C., Morales, D. A., Huycke, M. M. & Gilmore, M. S. Molecular characterization of the Enterococcus faecalis cytolysin activator. Infect. Immun. 59, 1239–1246 (1991).

  43. 43

    Ike, Y., Hashimoto, H. & Clewell, D. B. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect. Immun. 45, 528–530 (1984).

  44. 44

    Park, S. Y. et al. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J. Immunol. 181, 6328–6336 (2008).

  45. 45

    Waters, C. M., Antiporta, M. H., Murray, B. E. & Dunny, G. M. Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J. Bacteriol. 185, 3613–3623 (2003).

  46. 46

    Thomas, V. C. et al. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol. Microbiol. 72, 1022–1036 (2009).

  47. 47

    Qin, X., Singh, K. V., Weinstock, G. M. & Murray, B. E. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect. Immun. 68, 2579–2586 (2000).

  48. 48

    Pinkston, K. L. et al. The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J. Bacteriol. 193, 4317–4325 (2011).

  49. 49

    Mylonakis, E. et al. The Enterococcus faecalis fsrB gene, a key component of the fsr quorum-sensing system, is associated with virulence in the rabbit endophthalmitis model. Infect. Immun. 70, 4678–4681 (2002).

  50. 50

    Mohamed, J. A., Huang, W., Nallapareddy, S. R., Teng, F. & Murray, B. E. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect. Immun. 72, 3658–3663 (2004).

  51. 51

    Zeng, J., Teng, F. & Murray, B. E. Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte-like T84 cells. Infect. Immun. 73, 1606–1612 (2005).

  52. 52

    Singh, K. V., Qin, X., Weinstock, G. M. & Murray, B. E. Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J. Infect. Dis. 178, 1416–1420 (1998).

  53. 53

    Sifri, C. D. et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect. Immun. 70, 5647–5650 (2002).

  54. 54

    Engelbert, M., Mylonakis, E., Ausubel, F. M., Calderwood, S. B. & Gilmore, M. S. Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect. Immun. 72, 3628–3633 (2004).

  55. 55

    Singh, K. V., Nallapareddy, S. R., Nannini, E. C. & Murray, B. E. Fsr-independent production of protease(s) may explain the lack of attenuation of an Enterococcus faecalis fsr mutant versus a gelE-sprE mutant in induction of endocarditis. Infect. Immun. 73, 4888–4894 (2005).

  56. 56

    Thurlow, L. R. et al. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect. Immun. 78, 4936–4943 (2010).

  57. 57

    Hubble, T. S., Hatton, J. F., Nallapareddy, S. R., Murray, B. E. & Gillespie, M. J. Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin. Oral Microbiol. Immunol. 18, 121–126 (2003).

  58. 58

    Solheim, M., Aakra, A., Snipen, L. G., Brede, D. A. & Nes, I. F. Comparative genomics of Enterococcus faecalis from healthy Norwegian infants. BMC Genomics 10, 194 (2009).

  59. 59

    Olmsted, S. B., Dunny, G. M., Erlandsen, S. L. & Wells, C. L. A plasmid-encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells. J. Infect. Dis. 170, 1549–1556 (1994).

  60. 60

    Schlievert, P. M. et al. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect. Immun. 66, 218–223 (1998).

  61. 61

    Waters, C. M. et al. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol. Microbiol. 52, 1159–1171 (2004).

  62. 62

    Heikens, E., Bonten, M. J. & Willems, R. J. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J. Bacteriol. 189, 8233–8240 (2007).

  63. 63

    Shankar, N. et al. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69, 4366–4372 (2001).

  64. 64

    Leendertse, M. et al. Enterococcal surface protein transiently aggravates Enterococcus faecium-induced urinary tract infection in mice. J. Infect. Dis. 200, 1162–1165 (2009).

  65. 65

    Heikens, E. et al. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microb. Infect. 13, 1185–1190 (2011).

  66. 66

    Hendrickx, A. P., Willems, R. J., Bonten, M. J. & van Schaik, W. LPxTG surface proteins of enterococci. Trends Microbiol. 17, 423–430 (2009).

  67. 67

    Nallapareddy, S. R., Weinstock, G. M. & Murray, B. E. Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol. Microbiol. 47, 1733–1747 (2003).

  68. 68

    Nallapareddy, S. R. & Murray, B. E. Ligand-signaled upregulation of Enterococcus faecalis ace transcription, a mechanism for modulating host-E. faecalis interaction. Infect. Immun. 74, 4982–4989 (2006).

  69. 69

    Liu, Q. et al. The Enterococcus faecalis MSCRAMM ACE binds its ligand by the Collagen Hug model. J. Biol. Chem. 282, 19629–19637 (2007). The structural characterization of Ace binding to collagen.

  70. 70

    Singh, K. V., Nallapareddy, S. R., Sillanpaa, J. & Murray, B. E. Importance of the collagen adhesin Ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog. 6, e1000716 (2010).

  71. 71

    Lebreton, F. et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect. Immun. 77, 2832–2839 (2009).

  72. 72

    Nallapareddy, S. R., Singh, K. V., Sillanpaa, J., Zhao, M. & Murray, B. E. Relative contributions of Ebp pili and the collagen adhesin Ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect. Immun. 79, 2901–2910 (2011).

  73. 73

    Nallapareddy, S. R., Singh, K. V., Okhuysen, P. C. & Murray, B. E. A functional collagen adhesin gene, acm, in clinical isolates of Enterococcus faecium correlates with the recent success of this emerging nosocomial pathogen. Infect. Immun. 76, 4110–4119 (2008).

  74. 74

    Brinster, S. et al. Enterococcal leucine-rich repeat-containing protein involved in virulence and host inflammatory response. Infect. Immun. 75, 4463–4471 (2007).

  75. 75

    Nallapareddy, S. R. et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Invest. 116, 2799–2807 (2006). First characterization of pili in enterococci.

  76. 76

    Hendrickx, A. P. et al. Expression of two distinct types of pili by a hospital-acquired Enterococcus faecium isolate. Microbiology 154, 3212–3223 (2008).

  77. 77

    Mandlik, A., Das, A. & Ton-That, H. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc. Natl Acad. Sci. USA 105, 14147–14152 (2008).

  78. 78

    Bourgogne, A., Thomson, L. C. & Murray, B. E. Bicarbonate enhances expression of the endocarditis and biofilm associated pilus locus, ebpR-ebpABC, in Enterococcus faecalis. BMC Microbiol. 10, 17 (2010).

  79. 79

    Gao, P. et al. Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation. J. Bacteriol. 192, 5489–5498 (2010).

  80. 80

    Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J. Infect. Dis. 195, 1671–1677 (2007).

  81. 81

    Tendolkar, P. M., Baghdayan, A. S. & Shankar, N. Putative surface proteins encoded within a novel transferable locus confer a high-biofilm phenotype to Enterococcus faecalis. J. Bacteriol. 188, 2063–2072 (2006).

  82. 82

    Sillanpaa, J. et al. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154, 3199–3211 (2008).

  83. 83

    Sillanpaa, J. et al. Characterization of the ebp fm pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence 1, 236–246 (2010).

  84. 84

    AlonsoDeVelasco, E., Verheul, A. F., Verhoef, J. & Snippe, H. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol. Rev. 59, 591–603 (1995).

  85. 85

    Theilacker, C. et al. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect. Immun. 74, 5703–5712 (2006).

  86. 86

    Thurlow, L. R., Thomas, V. C., Fleming, S. D. & Hancock, L. E. Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect. Immun. 77, 5551–5557 (2009).

  87. 87

    Hancock, L. E. & Gilmore, M. S. The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc. Natl Acad. Sci. USA 99, 1574–1579 (2002). The description and characterization of E. faecalis capsular polysaccharides.

  88. 88

    Xu, Y., Jiang, L., Murray, B. E. & Weinstock, G. M. Enterococcus faecalis antigens in human infections. Infect. Immun. 65, 4207–4215 (1997).

  89. 89

    Teng, F., Singh, K. V., Bourgogne, A., Zeng, J. & Murray, B. E. Further characterization of the epa gene cluster and Epa polysaccharides of Enterococcus faecalis. Infect. Immun. 77, 3759–3767 (2009).

  90. 90

    Teng, F., Jacques-Palaz, K. D., Weinstock, G. M. & Murray, B. E. Evidence that the enterococcal polysaccharide antigen gene (epa) cluster is widespread in Enterococcus faecalis and influences resistance to phagocytic killing of E. faecalis. Infect. Immun. 70, 2010–2015 (2002).

  91. 91

    Xu, Y., Singh, K. V., Qin, X., Murray, B. E. & Weinstock, G. M. Analysis of a gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect. Immun. 68, 815–823 (2000).

  92. 92

    Singh, K. V., Lewis, R. J. & Murray, B. E. Importance of the epa locus of Enterococcus faecalis OG1RF in a mouse model of ascending urinary tract infection. J. Infect. Dis. 200, 417–420 (2009).

  93. 93

    Fabretti, F. et al. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect. Immun. 74, 4164–4171 (2006).

  94. 94

    Theilacker, C. et al. Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol. Microbiol. 71, 1055–1069 (2009).

  95. 95

    Freitas, A. R. et al. Global spread of the hyl Efm colonization-virulence gene in megaplasmids of the Enterococcus faecium CC17 polyclonal subcluster. Antimicrob. Agents Chemother. 54, 2660–2665 (2010).

  96. 96

    Laverde Gomez, J. A. et al. A multiresistance megaplasmid pLG1 bearing a hyl Efm genomic island in hospital Enterococcus faecium isolates. Int. J. Med. Microbiol. 301, 165–175 (2011).

  97. 97

    Arias, C. A., Panesso, D., Singh, K. V., Rice, L. B. & Murray, B. E. Cotransfer of antibiotic resistance genes and a hyl Efm-containing virulence plasmid in Enterococcus faecium. Antimicrob. Agents Chemother. 53, 4240–4246 (2009).

  98. 98

    Rice, L. B. et al. Transferable capacity for gastrointestinal colonization in Enterococcus faecium in a mouse model. J. Infect. Dis. 199, 342–349 (2009). The characterization of the role of the Hyl Efm plasmid in intestinal colonization in mice.

  99. 99

    Panesso, D. et al. The hyl Efm gene in pHylEfm of Enterococcus faecium is not required in pathogenesis of murine peritonitis. BMC Microbiol. 11, 20 (2011).

  100. 100

    Nannini, E. C., Teng, F., Singh, K. V. & Murray, B. E. Decreased virulence of a gls24 mutant of Enterococcus faecalis OG1RF in an experimental endocarditis model. Infect. Immun. 73, 7772–7774 (2005).

  101. 101

    Choudhury, T., Singh, K. V., Sillanpaa, J., Nallapareddy, S. R. & Murray, B. E. Importance of two Enterococcus faecium loci encoding Gls-like proteins for in vitro bile salts stress response and virulence. J. Infect. Dis. 203, 1147–1154 (2011).

  102. 102

    Claiborne, A. et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407–15416 (1999).

  103. 103

    La Carbona, S. et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol. Microbiol. 66, 1148–1163 (2007).

  104. 104

    Dunny, G. M., Leonard, B. A. & Hedberg, P. J. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J. Bacteriol. 177, 871–876 (1995).

  105. 105

    Clewell, D. B. & Gawron-Burke, C. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu. Rev. Microbiol. 40, 635–659 (1986).

  106. 106

    Hamburger, M. & Stein, L. Streptococcus viridans subacute bacterial endocarditis; two week treatment schedule with penicillin. JAMA 149, 542–545 (1952).

  107. 107

    Eliopoulos, G. M. Aminoglycoside resistant enterococcal endocarditis. Infect. Dis. Clin. North Am. 7, 117–133 (1993).

  108. 108

    Thauvin, C., Eliopoulos, G. M., Willey, S., Wennersten, C. & Moellering, R. C. Jr. Continuous-infusion ampicillin therapy of enterococcal endocarditis in rats. Antimicrob. Agents Chemother. 31, 139–143 (1987).

  109. 109

    Moellering, R. C. Jr & Weinberg, A. N. Studies on antibiotic synergism against enterococci. II. Effect of various antibiotics on the uptake of 14 C-labeled streptomycin by enterococci. J. Clin. Invest. 50, 2580–2584 (1971). A pivotal paper confirming the effect of cell wall antibiotics on the uptake of aminoglycosides and the basis for the synergistic effect.

  110. 110

    Murray, B. E. β-lactamase-producing enterococci. Antimicrob. Agents Chemother. 36, 2355–2359 (1992). A review of the discovery and characterization of β-lactamase in enterococci.

  111. 111

    Fontana, R., Ligozzi, M., Pittaluga, F. & Satta, G. Intrinsic penicillin resistance in enterococci. Microb. Drug Resist. 2, 209–213 (1996).

  112. 112

    Rice, L. B., Carias, L. L., Marshall, S., Rudin, S. D. & Hutton-Thomas, R. Tn5386, a novel Tn916-like mobile element in Enterococcus faecium D344R that interacts with Tn916 to yield a large genomic deletion. J. Bacteriol. 187, 6668–6677 (2005).

  113. 113

    Sauvage, E. et al. The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell. Mol. Life Sci. 59, 1223–1232 (2002).

  114. 114

    Rybkine, T., Mainardi, J. L., Sougakoff, W., Collatz, E. & Gutmann, L. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J. Infect. Dis. 178, 159–163 (1998).

  115. 115

    Galloway-Pena, J. R., Nallapareddy, S. R., Arias, C. A., Eliopoulos, G. M. & Murray, B. E. Analysis of clonality and antibiotic resistance among early clinical isolates of Enterococcus faecium in the United States. J. Infect. Dis. 200, 1566–1573 (2009).

  116. 116

    Chow, J. W. Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 31, 586–589 (2000).

  117. 117

    Hollingshead, S. & Vapnek, D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13, 17–30 (1985).

  118. 118

    Krogstad, D. J. et al. Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis. An explanation for resistance to antibiotic synergism. J. Clin. Invest. 62, 480–486 (1978).

  119. 119

    Mingeot-Leclercq, M. P., Glupczynski, Y. & Tulkens, P. M. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43, 727–737 (1999).

  120. 120

    Galimand, M. et al. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 17, 251–262 (2011).

  121. 121

    Uttley, A. H., Collins, C. H., Naidoo, J. & George, R. C. Vancomycin-resistant enterococci. Lancet 1, 57–58 (1988).

  122. 122

    Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319, 157–161 (1988).

  123. 123

    D'Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

  124. 124

    Swenson, J. M., Facklam, R. R. & Thornsberry, C. Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus, and Lactobacillus species. Antimicrob. Agents Chemother. 34, 543–549 (1990).

  125. 125

    Guardabassi, L., Perichon, B., van Heijenoort, J., Blanot, D. & Courvalin, P. Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob. Agents Chemother. 49, 4227–4233 (2005).

  126. 126

    Werner, G., Strommenger, B. & Witte, W. Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol. 3, 547–562 (2008).

  127. 127

    Arthur, M. & Courvalin, P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37, 1563–1571 (1993). A review of the mechanisms of high-level resistance to vancomycin in enterococci.

  128. 128

    Foucault, M. L., Depardieu, F., Courvalin, P. & Grillot-Courvalin, C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc. Natl Acad. Sci. USA 107, 16964–16969 (2010). An evaluation of the fitness costs of vancomycin resistance in enterococci.

  129. 129

    Fantin, B., Leclercq, R., Garry, L. & Carbon, C. Influence of inducible cross-resistance to macrolides, lincosamides, and streptogramin B-type antibiotics in Enterococcus faecium on activity of quinupristin-dalfopristin in vitro and in rabbits with experimental endocarditis. Antimicrob. Agents Chemother. 41, 931–935 (1997).

  130. 130

    Harms, J. M., Schlunzen, F., Fucini, P., Bartels, H. & Yonath, A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2, 4 (2004).

  131. 131

    Singh, K. V., Weinstock, G. M. & Murray, B. E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 46, 1845–1850 (2002).

  132. 132

    Kehoe, L. E., Snidwongse, J., Courvalin, P., Rafferty, J. B. & Murray, I. A. Structural basis of Synercid (quinupristin-dalfopristin) resistance in Gram-positive bacterial pathogens. J. Biol. Chem. 278, 29963–29970 (2003).

  133. 133

    Korczynska, M., Mukhtar, T. A., Wright, G. D. & Berghuis, A. M. Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Proc. Natl Acad. Sci. USA 104, 10388–10393 (2007).

  134. 134

    Leach, K. L. et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell 26, 393–402 (2007).

  135. 135

    Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci. USA 105, 13339–13344 (2008).

  136. 136

    Boumghar-Bourtchai, L., Dhalluin, A., Malbruny, B., Galopin, S. & Leclercq, R. Influence of recombination on development of mutational resistance to linezolid in Enterococcus faecalis JH2-2. Antimicrob. Agents Chemother. 53, 4007–4009 (2009).

  137. 137

    Lobritz, M., Hutton-Thomas, R., Marshall, S. & Rice, L. B. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob. Agents Chemother. 47, 3318–3320 (2003).

  138. 138

    Toh, S. M. et al. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 64, 1506–1514 (2007). The first description of the methyltransferase Cfr conferring resistance to linezolid in a human clinical isolate.

  139. 139

    Arias, C. A. et al. Genetic basis for in vivo daptomycin resistance in enterococci. N. Engl. J. Med. 365, 892–900 (2011). The identification of novel genes involved in in vivo development of daptomycin resistance in vancomycin-resistant E. faecalis.

  140. 140

    Palmer, K. L., Daniel, A., Hardy, C., Silverman, J. & Gilmore, M. S. Genetic basis for daptomycin resistance in enterococci. Antimicrob. Agents Chemother. 55, 3345–3356 (2011).

  141. 141

    Hanin, A. et al. Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS ONE 5, e11879 (2010).

  142. 142

    Shioya, K. et al. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583. PLoS ONE 6, e23948 (2011).

  143. 143

    Fouquier d'Herouel, A. et al. A simple and efficient method to search for selected primary transcripts: non-coding and antisense RNAs in the human pathogen Enterococcus faecalis. Nucleic Acids Res. 39, e46 (2011).

  144. 144

    Zaph, C. Which species are in your feces? J. Clin. Invest. 120, 4182–4185 (2010).

  145. 145

    Jett, B. D., Jensen, H. G., Nordquist, R. E. & Gilmore, M. S. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect. Immun. 60, 2445–2452 (1992).

  146. 146

    Nallapareddy, S. R. et al. Conservation of Ebp-type pilus genes among Enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect. Immun. 79, 2911–2920 (2011).

  147. 147

    Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect. Immun. 78, 4166–4175 (2010).

  148. 148

    Zhao, C. et al. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect. Immun. 78, 3889–3897 (2010).

  149. 149

    Coburn, P. S., Baghdayan, A. S., Dolan, G. T. & Shankar, N. An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect. Immun. 76, 5668–5676 (2008).

  150. 150

    Hufnagel, M., Koch, S., Creti, R., Baldassarri, L. & Huebner, J. A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J. Infect. Dis. 189, 420–430 (2004).

  151. 151

    Le Jeune, A. et al. The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. PLoS ONE 5, e9658 (2010).

Download references


The authors have been supported by US National Institutes of Health grants R01 AI067861 and R37 AI47923 (B.E.M.), and R00 AI72961 and R01 AI093749 (C.A.A.) from the US National Institute of Allergy and Infectious Diseases (NIAID). The authors are grateful to J. Sillanpaa and S. Nallapareddy for discussions and insights.

Author information

Correspondence to Cesar A. Arias or Barbara E. Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Barbara E. Murray's homepage



Microorganisms such as bacteria and yeasts that, when ingested, are thought to provide a beneficial effect to the host.

Third-generation cephalosporins

β-lactam compounds with broad-spectrum activity against Gram-positive cocci (except enterococci) and many Gram-negative bacteria. These antibiotics include ceftazidime, ceftriaxone, cefotaxime and cefpodoxime.


An important component of the outer membrane of Gram-negative organisms, composed of a membrane lipid (lipid A) and a polysaccharide chain.


A protein that forms the flagellum of Gram-negative bacteria.

Toll-like receptors

Receptors that are found on and in eukaryotic cells and recognize molecular patterns which are shared by bacterial pathogens.


A protein that binds to carbohydrate moieties.

Clonal complexes

Groups of bacterial isolates, as derived from multilocus sequence typing (MLST) analysis. A clonal complex usually includes isolates that differ from one another at only one of the seven loci analysed by MLST.


A group of bacterial isolates that are genetically related and probably share a common ancestor.

Pheromone-responsive plasmids

Plasmids that are known to respond to a peptide pheromone produced by a recipient cell, which initiates the mating process.

Aggregation substance proteins

A family of surface-localized proteins that are encoded by pheromone-responsive plasmids. These proteins mediate binding of donor bacterial cells to recipients cells.

LPXTG-like motifs

Specific amino acid sequences (X refers to any amino acid) that are found in surface proteins and are necessary for the specific attachment of the protein to the cell wall peptidoglycan.

Immunoglobulin-like folds

Structural domains of immunoglobulins, consisting of two sheets of antiparallel strands that form a sandwich-like structure. These folds are shared by some bacterial surface proteins.


A gene that has lost its ability to be expressed or to be functional.


Hair-like projections that are present on the bacterial surface.

Pilin subunits

Proteins that form the pilus.


An enzyme for which the main function is to attach surface proteins to the cell wall peptidoglycan or to other proteins after recognition of an LPXTG motif.


Referring to the ability of a moiety to increase phagocytosis of an invading pathogen.

Lipoteichoic acid

An important structure of the cell wall of Gram-positive bacteria. It is composed of cell membrane-anchored teichoic acids (chains of ribitol phosphate).

β-lactam antibiotics

Naturally produced antimicrobials encompassing several classes, including penicillins, cephalosporins, cephamycins, monobactams and carbapenems, all of which contain a ß-lactam ring.


Naturally occurring antibiotics that are produced by soil bacteria and inhibit protein synthesis. A mixture of the streptogramins quinupristin and dalfopristin is currently available for clinical use and is approved by the US Food and Drug Administration for the treatment of vancomycin-resistant Enterococcus faecium infections.

Rights and permissions

Reprints and Permissions

About this article

Further reading