Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational tools for the synthetic design of biochemical pathways

Key Points

  • The rise of synthetic biology defines a new era in the metabolic engineering of microorganisms, an era characterized by the biosynthesis of biofuels and natural products through the de novo construction of biochemical pathways using parts from disparate origins. The development and effective implementation of computational tools is crucial to make such approaches possible.

  • Several algorithms have been devised to find the metabolic pathways that are theoretically most suitable for thermodynamically efficient production of a certain compound. After detection of all possible pathways on the basis of enzyme classifications and/or possible chemical transformations, they can be ranked according to, for example, pathway length, thermodynamic efficiency and maximum predicted yields.

  • Promising pathways can be integrated into genome-scale metabolic models of candidate host organisms to test how well the topology of their metabolic networks can accommodate the synthetic heterologous pathway. Such metabolic models can now be reconstructed rapidly because of the emergence of high-throughput model generation software, and pathway visualization tools facilitate quick and efficient analysis of modelling results.

  • Various strategies are available for the computational identification of candidate parts, depending on the type and diversity of the parts that are searched for. For the identification of single enzyme-encoding genes, homology searches coupled to phylogenetic analysis can sometimes suffice. In more complex cases, automated in silico prediction of substrate specificities in enzyme families may allow more efficient prioritization of possible targets. Additionally, several algorithms have recently been developed for detecting multigene modules, such as biosynthetic operons or gene clusters.

  • In order to effectively integrate foreign enzymatic parts into a given host organism, the codon usage of the genes encoding the enzymes can be matched to that of the host. Thus, the probability of obtaining efficient translation is increased. Using computer-aided design, the codon-optimized parts can then be integrated into transcriptional units with designed regulatory circuits that can be simulated in silico before commencing the DNA synthesis of the final constructs.

  • There is still a wide range of opportunities for developing novel computational tools in this field. If these developments go hand-in-hand with developments in experimental approaches, the field of synthetic microbiology is likely to obtain a central position in the field of microbial biotechnology.

Abstract

As the field of synthetic biology is developing, the prospects for de novo design of biosynthetic pathways are becoming more and more realistic. Hence, there is an increasing need for computational tools that can support these efforts. A range of algorithms has been developed that can be used to identify all possible metabolic pathways and their corresponding enzymatic parts. These can then be ranked according to various properties and modelled in an organism-specific context. Finally, design software can aid the biologist in the integration of a selected pathway into smartly regulated transcriptional units. Here, we review key existing tools and offer suggestions for how informatics can help to shape the future of synthetic microbiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized workflow for de novo engineering of biosynthetic pathways, from initial idea to final product.
Figure 2: Scheme showing the steps involved in the identification of various parts, their refactoring and their integration into transcriptional units.

Similar content being viewed by others

References

  1. Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bond-Watts, B. B., Bellerose, R. J. & Chang, M. C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chem. Biol. 7, 222–227 (2011). This article reports the engineering of biosynthetic pathways that convert simple sugars into biofuels in E. coli.

    CAS  Google Scholar 

  3. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nature Rev. Genet. 11, 367–379 (2010).

    CAS  PubMed  Google Scholar 

  4. Medema, M. H., Breitling, R., Bovenberg, R. & Takano, E. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nature Rev. Microbiol. 9, 131–137 (2011). References 3 and 4 describe the ways in which synthetic biology can be applied practically for drug discovery, biofuel production and biomaterial production.

    CAS  Google Scholar 

  5. Walsh, C. T. & Fischbach, M. A. Natural products version 2.0: connecting genes to molecules. J. Am. Chem. Soc. 132, 2469–2493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanai, T., Atsumi, S. & Liao, J. C. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 73, 7814–7818 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    CAS  PubMed  Google Scholar 

  8. Zhang, W., Li, Y. & Tang, Y. Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 20683–20688 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Menzella, H. G. et al. Redesign, synthesis and functional expression of the 6-deoxyerythronolide B polyketide synthase gene cluster. J. Ind. Microbiol. Biotechnol. 33, 22–28 (2006).

    CAS  PubMed  Google Scholar 

  10. Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Prather, K. L. J. & Martin, C. H De novo biosynthetic pathways: rational design of microbial chemical factories. Curr. Opin. Biotechnol. 19, 468–474 (2008).

    PubMed  Google Scholar 

  12. Martin, C. H., Nielsen, D. R., Solomon, K. V. & Prather, K. L. Synthetic metabolism: engineering biology at the protein and pathway scales. Chem. Biol. 16, 277–286 (2009). References 11 and 12 review the principles and ideas that are key to the engineering of synthetic pathways.

    CAS  PubMed  Google Scholar 

  13. Tyo, K. E., Kocharin, K. & Nielsen, J. Toward design-based engineering of industrial microbes. Curr. Opin. Microbiol. 13, 255–262 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weeks, A. M. & Chang, M. C. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry 50, 5404–5418 (2011).

    CAS  PubMed  Google Scholar 

  15. Soh, K. C. & Hatzimanikatis, V. DREAMS of metabolism. Trends Biotechnol. 28, 501–508 (2010).

    CAS  PubMed  Google Scholar 

  16. Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotech. 21, 796–802 (2003).

    CAS  Google Scholar 

  17. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    CAS  PubMed  Google Scholar 

  18. Chang, M. C., Eachus, R. A., Trieu, W., Ro, D. K. & Keasling, J. D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chem. Biol. 3, 274–277 (2007).

    CAS  Google Scholar 

  19. Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. & Palsson, B. Ø. Reconstruction of biochemical networks in microorganisms. Nature Rev. Microbiol. 7, 129–143 (2009).

    CAS  Google Scholar 

  20. Xu, D. Computational methods for protein sequence comparison and search. Curr. Protoc. Protein Sci. Ch. 2, Unit 2.1 (2009).

  21. Marchisio, M. A. & Stelling, J. Computational design tools for synthetic biology. Curr. Opin. Biotechnol. 20, 479–485 (2009).

    CAS  PubMed  Google Scholar 

  22. Pharkya, P., Burgard, A. P. & Maranas, C. D. OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367–2376 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McShan, D. C., Rao, S. & Shah, I. PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics 19, 1692–1698 (2003).

    CAS  PubMed  Google Scholar 

  24. Hou, B. K., Wackett, L. P. & Ellis, L. B. M. Microbial pathway prediction: a functional group approach. J. Chem. Inf. Comput. Sci. 43, 1051–1057 (2003).

    CAS  PubMed  Google Scholar 

  25. Chou, C., Chang, W., Chiu, C., Huang, C. & Huang, H. FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res. 37, W129–W134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatzimanikatis, V. et al. Exploring the diversity of complex metabolic networks. Bioinformatics 21, 1603–1609 (2005). Description of the original BNICE framework for metabolic pathway identification.

    CAS  PubMed  Google Scholar 

  27. Bachmann, B. O. Biosynthesis: is it time to go retro? Nature Chem. Biol. 6, 390–393 (2010).

    CAS  Google Scholar 

  28. Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol. Bioeng. 106, 462–473 (2010).

    CAS  PubMed  Google Scholar 

  29. Rodrigo, G., Carrera, J., Prather, K. J. & Jaramillo, A. DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24, 2554–2556 (2008).

    CAS  PubMed  Google Scholar 

  30. Cho, A., Yun, H., Park, J., Lee, S. & Park, S. Prediction of novel synthetic pathways for the production of desired chemicals. BMC Systems Biol. 4, 35 (2010).

    Google Scholar 

  31. Carbonell, P., Planson, A. G., Fichera, D. & Faulon, J. L. A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst. Biol. 5, 122 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Papin, J. A., Price, N. D. & Palsson, B. Ø. Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res. 12, 1889–1900 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jankowski, M. D., Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys. J. 95, 1487–1499 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Breitling, R., Vitkup, D. & Barrett, M. P. New surveyor tools for charting microbial metabolic maps. Nature Rev. Microbiol. 6, 156–161 (2008).

    CAS  Google Scholar 

  35. Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    CAS  PubMed  Google Scholar 

  36. Rocha, I. et al. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4, 45 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    CAS  PubMed  Google Scholar 

  38. Dixon, N. et al. Reengineering orthogonally selective riboswitches. Proc. Natl Acad. Sci. USA 107, 2830–2835 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Neumann, H., Slusarczyk, A. L. & Chin, J. W. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J. Am. Chem. Soc. 132, 2142–2144 (2010).

    CAS  PubMed  Google Scholar 

  40. An, W. & Chin, J. W. Synthesis of orthogonal transcription-translation networks. Proc. Natl Acad. Sci. USA 106, 8477–8482 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, K., Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nature Biotech. 25, 770–777 (2007).

    Google Scholar 

  42. Durot, M., Bourguignon, P. Y. & Schachter, V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 (2009).

    CAS  PubMed  Google Scholar 

  43. Price, N. D., Reed, J. L. & Palsson B. Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004).

    CAS  Google Scholar 

  44. Oberhardt, M. A., Palsson, B. Ø. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Edwards, J. S. & Palsson, B. Ø. Towards metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288–295 (1999).

    PubMed  Google Scholar 

  46. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nature Biotech. 28, 245–248 (2010).

    CAS  Google Scholar 

  47. Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brochado, A. R. et al. Improved vanillin production in baker's yeast through in silico design. Microb. Cell. Fact. 9, 84 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Asadollahi, M. A. et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 11, 328–334 (2009).

    CAS  PubMed  Google Scholar 

  50. Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805 (2007).

    CAS  PubMed  Google Scholar 

  51. Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature Protoc. 2, 727–738 (2007).

    CAS  Google Scholar 

  52. Gevorgyan, A., Bushell, M. E., Avignone-Rossa, C. & Kierzek, A. M. SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks. Bioinformatics 27, 433–434 (2011).

    CAS  PubMed  Google Scholar 

  53. Le Fevre, F. et al. CycSim — an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25, 1987–1988 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cvijovic, M. et al. BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res. 38, W144–W149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Finley, S., Broadbelt, L. & Hatzimanikatis, V. In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Systems Biol. 4, 7 (2010).

    Google Scholar 

  56. Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotech. 28, 977–982 (2010). A seminal paper describing a pipeline for the high-throughput generation of genome-scale metabolic models from annotated genomes.

    CAS  Google Scholar 

  57. Alam, M. T., Medema, M. H., Takano, E. & Breitling, R. Comparative genome-scale metabolic modeling of actinomycetes: the topology of essential core metabolism. FEBS Lett. 585, 2389–2394 (2011). This is one of the first studies to use a large number of genome-scale metabolic models to perform comparative metabolic model analysis.

    CAS  PubMed  Google Scholar 

  58. Yamada, T. Letunic, I., Okuda, S., Kanehisa, M. & Bork, P. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 26, 787–793 (2011).

    Google Scholar 

  59. Bates, J. T., Chivian, D. & Arkin, A. P. GLAMM: Genome-Linked Application for Metabolic Maps. Nucleic Acids Res. 39, W400–W405 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M. & Gennari, J. H. Standard biological parts knowledgebase. PLoS ONE 6, e17005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nature Biotech. 26, 787–793 (2008). This perspective article proposes ways in which biological parts and devices can be standardized to allow for their modular and universal use.

    CAS  Google Scholar 

  62. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).

    CAS  PubMed  Google Scholar 

  63. Letunic, I., Doerks, T. & Bork, P. SMART 6: recent updates and new developments. Nucleic Acids Res. 37, D229–D232 (2009).

    CAS  PubMed  Google Scholar 

  64. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211 (2009).

    PubMed  Google Scholar 

  65. Goyal, K., Mohanty, D. & Mande, S. C. PAR-3D: a server to predict protein active site residues. Nucleic Acids Res. 35, W503–W505 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Bray, T. et al. SitesIdentify: a protein functional site prediction tool. BMC Bioinformat. 10, 379 (2009).

    Google Scholar 

  67. Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5, 366–375 (2004).

    CAS  PubMed  Google Scholar 

  68. Hall, B. G. Simple and accurate estimation of ancestral protein sequences. Proc. Natl Acad. Sci. USA 103, 5431–5436 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Röttig, M., Rausch, C. & Kohlbacher, O. Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families. PLoS. Comput. Biol. 6, e1000636 (2010). This paper presents an automated method for predicting substrate specificities within enzyme families using the amino acids extracted from the area around the protein active site.

    PubMed  PubMed Central  Google Scholar 

  70. Röttig, M. et al. NRPSpredictor2 — a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Mavromatis, K. et al. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS ONE 4, e7979 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Puigbo, P., Guzman, E., Romeu, A. & Garcia-Vallve, S. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35, W126–W131 (2007).

    PubMed  PubMed Central  Google Scholar 

  74. Richardson, S. M., Nunley, P. W., Yarrington, R. M., Boeke, J. D. & Bader, J. S. GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res. 38, 2603–2606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformat. 7, 285 (2006).

    Google Scholar 

  76. Czar, M. J., Cai, Y. & Peccoud, J. Writing DNA with GenoCAD. Nucleic Acids Res. 37, W40–W47 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mukherji, S. & van Oudenaarden, A. Synthetic biology: understanding biological design from synthetic circuits. Nature Rev. Genet. 10, 859–871 (2009).

    CAS  PubMed  Google Scholar 

  78. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature 469, 212–215 (2011).

    CAS  PubMed  Google Scholar 

  79. Weeding, E., Houle, J. & Kaznessis, Y. N. SynBioSS designer: a web-based tool for the automated generation of kinetic models for synthetic biological constructs. Brief. Bioinform. 11, 394–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rialle, S. et al. BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks. Bioinformatics 26, 2298–2304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotech. 27, 946–950 (2009). This article describes a predictive method for designing synthetic RBSs that allows the translation of synthetic genes to be tuned according to their desired stoichiometry.

    CAS  Google Scholar 

  82. Salis, H. M. The ribosome binding site calculator. Meth. Enzymol. 498, 19–42 (2011).

    CAS  Google Scholar 

  83. Na, D. & Lee, D. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26, 2633–2634 (2010).

    CAS  PubMed  Google Scholar 

  84. Hoover, D. M. & Lubkowski, J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30, e43 (2002).

    PubMed  PubMed Central  Google Scholar 

  85. Bode, M., Khor, S., Ye, H., Li, M. H. & Ying, J. Y. TmPrime: fast, flexible oligonucleotide design software for gene synthesis. Nucleic Acids Res. 37, W214–W221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Matzas, M. et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature Biotech. 28, 1291–1294 (2010).

    CAS  Google Scholar 

  87. Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotech. 28, 1295–1299 (2010).

    CAS  Google Scholar 

  88. Quan, J. et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nature Biotech. 29, 449–452 (2011).

    CAS  Google Scholar 

  89. Heneghan, M. N. et al. First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. Chembiochem 11, 1508–1512 (2010).

    CAS  PubMed  Google Scholar 

  90. Kwok, R. Five hard truths for synthetic biology. Nature 463, 288–290 (2010).

    CAS  PubMed  Google Scholar 

  91. Wishart, D. S. Computational strategies for metabolite identification in metabolomics. Bioanalysis 1, 1579–1596 (2009).

    CAS  PubMed  Google Scholar 

  92. Willett, P., Barnard, J. M. & Downs, G. M. Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38, 983–996 (1998).

    CAS  Google Scholar 

  93. Ridley, D. D. Introduction to structure searching with SciFinder Scholar. J. Chem. Educ. 78, 559 (2001).

    CAS  Google Scholar 

  94. Berger, M. F. et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nature Biotech. 24, 1429–1435 (2006).

    CAS  Google Scholar 

  95. Fordyce, P. M. et al. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nature Biotech. 28, 970–975 (2010).

    CAS  Google Scholar 

  96. van Hijum, S. A., Medema, M. H. & Kuipers, O. P. Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol. Mol. Biol. Rev. 73, 481–509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Francke, C., Kerkhoven, R., Wels, M. & Siezen, R. J. A generic approach to identify transcription factor-specific operator motifs; inferences for LacI-family mediated regulation in Lactobacillus plantarum WCFS1. BMC Genomics 9, 145 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. Lim, H. N., Lee, Y. & Hussein, R. Fundamental relationship between operon organization and gene expression. Proc. Natl Acad. Sci. USA 108, 10626–10631 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Llopis, P. M. et al. Spatial organization of the flow of genetic information in bacteria. Nature 466, 77–81 (2010).

    CAS  PubMed Central  Google Scholar 

  100. Dietrich, J. A. et al. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3 . ACS Chem. Biol. 4, 261–267 (2009).

    CAS  PubMed  Google Scholar 

  101. Müller, U. et al. Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine (D-Phg). Metab. Eng. 8, 196–208 (2006).

    PubMed  Google Scholar 

  102. Bayer, T. S. et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131, 6508–6515 (2009). A breakthrough in the use of synthetic genes for pathway engineering. The authors generated codon-optimized synthetic genes for all homologues of an enzyme-coding gene, and characterized them in high throughput to find the best-performing enzyme.

    CAS  PubMed  Google Scholar 

  103. Dunlop, M. J. et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7, 487 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Mullis, K. B. The unusual origin of the polymerase chain reaction. Sci. Am. 262, 56–61, 64–65 (1990).

    CAS  PubMed  Google Scholar 

  105. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  106. Mavrovouniotis, M., Stephanopoulos, G. & Stephanopoulos, G. Synthesis of biochemical production routes. Comput. Chem. Eng. 16, 605–619 (1992).

    CAS  Google Scholar 

  107. Fleischmann, R. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    CAS  PubMed  Google Scholar 

  108. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Heath, A. P., Bennett, G. N. & Kavraki, L. E. Finding metabolic pathways using atom tracking. Bioinformatics 26, 1548–1555 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, P. A. et al. CLONEQC: lightweight sequence verification for synthetic biology. Nucleic Acids Res. 38, 2617–2623 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chandran, D., Bergmann, F. T. & Sauro, H. M. TinkerCell: modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. Rodrigo, G., Carrera, J. & Jaramillo, A. Asmparts: assembly of biological model parts. Syst. Synth. Biol. 1, 167–170 (2007).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriko Takano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Active Site Classification (ASC)

antiSMASH

Asmparts

Biojade

BioMet Toolbox

BioNetCAD

CarbonSearch

CellDesigner

CloneQC

Clotho

COBRA Toolbox

CycSim

DESHARKY

DNAWorks

From Metabolite to Metabolite (FMM)

Gene Composer

Gene Designer 2.0

GeneDesign

GenoCAD

GLAMM

Integrated Microbial Genomes (IMG)

iPATH2

KEGG

MultiGeneBlast

Optimizer

RBS Calculator

RBSDesigner

Registry of Standard Biological Parts

RetroPath

Standard Biological Parts knowledgebase

SurreyFBA

SynBioSS

TinkerCell

WebGEC

Glossary

Parts

Basic building blocks that can be incorporated into a design in synthetic biology; for example, a ribosome binding site, promoter or enzyme coding sequence.

Biosynthetic pathway

Sequence of enzymatically catalysed reactions that convert one or more source metabolites into a product compound.

Flux balance analysis

Computational method for analysing a metabolic system under the assumption of metabolic steady state.

KEGG

The Kyoto Encyclopedia of Genes and Genomes, a portal of web databases on genomes, metabolic pathways and enzymes. The KEGG PATHWAY database contains biochemical pathways in the context of the rest of the metabolic network, and the KEGG LIGAND database contains chemical substances and the biochemical reactions that interconvert them.

Enzyme Commission classification

Hierarchical numerical classification of enzymes standardized by the Enzyme Commission; the complete Enzyme Commission number of an enzyme consists of four numbers, separated by dots, that define with increasing detail the enzyme class and subclasses that it belongs to.

Metabolic flux

Flow of metabolites through a metabolic system.

Genome-scale metabolic models

Models of all of the enzymatic reactions encoded in a genome, based on the genome annotation.

Support vector machines

Machine learning classification algorithms based on hyperplanes that separate two or more classes in a multidimensional parameter space.

Computer-aided design

(CAD). The use of computers for the design process in engineering, including, for example, functionalities for drafting and simulation.

Codon usage

Genome-specific frequency of occurrence of the different codons that can encode each amino acid.

Orthologue

Orthologues are genes with similar functions that derive from a common ancestor through vertical descent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medema, M., van Raaphorst, R., Takano, E. et al. Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10, 191–202 (2012). https://doi.org/10.1038/nrmicro2717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2717

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology