Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Candida albicans morphogenesis and host defence: discriminating invasion from colonization

Key Points

  • Candida albicans is the most common fungal pathogen of humans, and also colonizes the skin and mucosal surfaces of most healthy individuals. Little was known about the mechanisms by which the mucosal immune response tolerates colonizing C. albicans yeast cells but reacts strongly when hyphae invade tissue.

  • C. albicans yeast cells and hyphae differ in their morphological properties, and this has important consequences for their recognition by mucosal immune cells.

  • Different mechanisms, in epithelial cells on the one hand and in immune cells on the other, are important for recognizing fungal invasion of the mucosa.

  • The germination of hyphae and increased fungal loads are recognized by epithelial cells, which then release pro-inflammatory cytokines and chemokines though specific kinase-dependent pathways.

  • Tissue macrophages recognize C. albicans hyphae through inflammasome activation mediated by a dectin 1-dependent pathway. In turn, this results in processing of pro-interleukin-1β and induction of T helper 17-type responses.

  • These mechanisms provide a conceptual framework for our understanding of tolerance to colonization versus immune defence against invasion by C. albicans and probably also by other microorganisms.

Abstract

Candida albicans is a common fungal pathogen of humans that colonizes the skin and mucosal surfaces of most healthy individuals. Until recently, little was known about the mechanisms by which mucosal antifungal defences tolerate colonizing C. albicans but react strongly when hyphae of the same microorganism attempt to invade tissue. In this Review, we describe the properties of yeast cells and hyphae that are relevant to their interaction with the host, and the immunological mechanisms that differentially recognize colonizing versus invading C. albicans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candida albicans tissue invasion.
Figure 2: Structure of the Candida albicans cell wall.
Figure 3: Different stimuli promote the formation of subtly different Candida albicans hyphae.
Figure 4: The main pattern recognition receptors involved in recognizing Candida albicans.
Figure 5: Colonization versus invasion.

Similar content being viewed by others

References

  1. Klein, B. S. & Tebbets, B. Dimorphism and virulence in fungi. Curr. Opin. Microbiol. 10, 314–319 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Romani, L., Bistoni, F. & Puccetti, P. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr. Opin. Microbiol. 6, 338–343 (2003).

    Article  PubMed  Google Scholar 

  3. Gow, N. A., Brown, A. J. & Odds, F. C. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Saville, S. P., Lazzell, A. L., Monteagudo, C. & Lopez-Ribot, J. L. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2, 1053–1060 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wachtler, B., Wilson, D., Haedicke, K., Dalle, F. & Hube, B. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS ONE 6, e17046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casadevall, A. & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nature Rev. Microbiol. 1, 17–24 (2003).

    Article  CAS  Google Scholar 

  7. Perlroth, J., Choi, B. & Spellberg, B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 45, 321–346 (2007).

    Article  PubMed  Google Scholar 

  8. Kirkpatrick, C. H. Chronic mucocutaneous candidiasis. J. Am. Acad. Dermatol. 31, S14–S17 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Sendid, B. et al. Anti-glycan antibodies establish an unexpected link between C. albicans and Crohn disease. Med. Sci. 25, 473–481 (2009).

    Google Scholar 

  10. Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. An integrated model of the recognition of Candida albicans by the innate immune system. Nature Rev. Microbiol. 6, 67–78 (2008). This article is the first to propose an integrated model of C. albicans immune recognition.

    Article  CAS  Google Scholar 

  11. Romani, L. Immunity to fungal infections. Nature Rev. Immunol. 11, 275–288 (2011). An excellent review on fungal pattern recognition and antifungal host defence.

    Article  CAS  Google Scholar 

  12. Bailey, D. A., Feldmann, P. J., Bovey, M., Gow, N. A. & Brown, A. J. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J. Bacteriol. 178, 5353–5360 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoyer, L. L., Payne, T. L., Bell, M., Myers, A. M. & Scherer, S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33, 451–459 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Staab, J. F., Ferrer, C. A. & Sundstrom, P. Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J. Biol. Chem. 271, 6298–6305 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Walker, L. A. et al. Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet. Biol. 46, 210–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swoboda, R. K. et al. Structure and regulation of the HSP90 gene from the pathogenic fungus Candida albicans. Infect. Immun. 63, 4506–4514 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Swoboda, R. K. et al. Glycolytic enzymes of Candida albicans are nonubiquitous immunogens during candidiasis. Infect. Immun. 61, 4263–4271 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo, G. et al. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J. Infect. Dis. 201, 1718–1728 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y. & Filler, S. G. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot. Cell 10, 168–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shibata, N., Suzuki, A., Kobayashi, H. & Okawa, Y. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem. J. 404, 365–372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walker, L. A. et al. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 4, e1000040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nather, K. & Munro, C. A. Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol. Lett. 285, 137–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Cabib, E. & Bowers, B. Chitin and yeast budding. Localization of chitin in yeast bud scars. J. Biol. Chem. 246, 152–159 (1971).

    CAS  PubMed  Google Scholar 

  24. Mora-Montes, H. M. et al. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect. Immun. 79, 1961–1970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gantner, B. N., Simmons, R. M. & Underhill, D. M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo, H. J. et al. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, X. & Wang, Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23, 1845–1856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, X. L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hall, R. A. et al. CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog. 6, e1001193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng, Q., Summers, E., Guo, B. & Fink, G. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181, 6339–6346 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hudson, D. A. et al. Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology 150, 3041–3049 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Maidan, M. M. et al. The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell 16, 1971–1986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shapiro, R. S. et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr. Biol. 19, 621–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deveau, A., Piispanen, A. E., Jackson, A. A. & Hogan, D. A. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot. Cell 9, 569–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bockmuhl, D. P. & Ernst, J. F. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157, 1523–1530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sohn, K., Urban, C., Brunner, H. & Rupp, S. EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47, 89–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Sinha, I. et al. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell 13, 421–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Bishop, A. et al. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J. 29, 2930–2942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, J., Lane, S. & Liu, H. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol. Microbiol. 46, 1335–1344 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Eisman, B. et al. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot. Cell 5, 347–358 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baek, Y. U., Martin, S. J. & Davis, D. A. Evidence for novel pH-dependent regulation of Candida albicans Rim101, a direct transcriptional repressor of the cell wall β-glycosidase Phr2. Eukaryot. Cell 5, 1550–1559 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lotz, H., Sohn, K., Brunner, H., Muhlschlegel, F. A. & Rupp, S. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot. Cell 3, 776–784 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stichternoth, C. et al. Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot. Cell 10, 502–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stichternoth, C. & Ernst, J. F. Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl. Environ. Microbiol. 75, 3663–3672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, Q. M., Wang, Y. M., Zheng, X. D., Lee, R. T. & Wang, Y. Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans. Mol. Biol. Cell 18, 815–826 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bachewich, C., Thomas, D. Y. & Whiteway, M. Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Mol. Biol. Cell 14, 2163–2180 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leng, P., Sudbery, P. E. & Brown, A. J. Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol. Microbiol. 35, 1264–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. da Silva Dantas, A. et al. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol. Cell. Biol. 30, 4550–4563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishii, K. J., Koyama, S., Nakagawa, A., Coban, C. & Akira, S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. van de Veerdonk, F. L., Kullberg, B. J., van der Meer, J. W., Gow, N. A. & Netea, M. G. Host–microbe interactions: innate pattern recognition of fungal pathogens. Curr. Opin. Microbiol. 11, 305–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Wheeler, R. T., Kombe, D., Agarwala, S. D. & Fink, G. R. Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog. 4, e1000227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bellocchio, S. et al. The contribution of Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059–3069 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Murciano, C., Yanez, A., Gil, M. L. & Gozalbo, D. Both viable and killed Candida albicans cells induce in vitro production of TNF-α and IFN-γ in murine cells through a TLR2-dependent signalling. Eur. Cytokine Netw. 18, 38–43 (2007).

    CAS  PubMed  Google Scholar 

  56. Netea, M. G. et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185, 1483–1489 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. van de Veerdonk, F. L. et al. Redundant role of TLR9 for anti-Candida host defense. Immunobiology 213, 613–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Gasparoto, T. H. et al. Absence of functional TLR4 impairs response of macrophages after Candida albicans infection. Med. Mycol. 48, 1009–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Netea, M. G., van de Veerdonk, F., Verschueren, I., van der Meer, J. W. & Kullberg, B. J. Role of TLR1 and TLR6 in the host defense against disseminated candidiasis. FEMS Immunol. Med. Microbiol. 52, 118–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nature Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  Google Scholar 

  61. Rogers, N. C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Gringhuis, S. I. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nature Immunol. 10, 203–213 (2009).

    Article  CAS  Google Scholar 

  63. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown, G. D. et al. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Taylor, P. R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nature Immunol. 8, 31–38 (2007).

    Article  CAS  Google Scholar 

  66. Saijo, S. et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunol. 8, 39–46 (2007).

    Article  CAS  Google Scholar 

  67. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stahl, P. D. & Ezekowitz, R. A. The mannose receptor is a pattern recognition receptor involved in host defense. Curr. Opin. Immunol. 10, 50–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Netea, M. G. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 116, 1642–1650 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Le Cabec, V., Emorine, L. J., Toesca, I., Cougoule, C. & Maridonneau-Parini, I. The human macrophage mannose receptor is not a professional phagocytic receptor. J. Leukoc. Biol. 77, 934–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Heinsbroek, S. E. et al. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog. 4, e1000218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van de Veerdonk, F. L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009). This study is the first to demonstrate the importance of mannose-containing structures in driving T H 17 cell responses.

    Article  CAS  PubMed  Google Scholar 

  75. Ariizumi, K. et al. Cloning of a second dendritic cell-associated C-type lectin (dectin-2) and its alternatively spliced isoforms. J. Biol. Chem. 275, 11957–11963 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. McGreal, E. P. et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16, 422–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Sato, K. et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J. Biol. Chem. 281, 38854–38866 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Robinson, M. J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koppel, E. A., van Gisbergen, K. P., Geijtenbeek, T. B. & van Kooyk, Y. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell. Microbiol. 7, 157–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Cambi, A. et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Cambi, A. et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem. 283, 20590–20599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wells, C. A. et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180, 7404–7413 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Means, T. K. et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206, 637–653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 197, 972–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. van der Graaf, C. A. et al. Nucleotide oligomerization domain 2 (Nod2) is not involved in the pattern recognition of Candida albicans. Clin. Vaccine Immunol. 13, 423–425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vonk, A. G. et al. Endogenous interleukin (IL)–1α and IL-1β are crucial for host defense against disseminated candidiasis. J. Infect. Dis. 193, 1419–1426 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Kumar, H. et al. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β-glucan. J. Immunol. 183, 8061–8067 (2009). This study finds that there is differential activation of the inflammasome by C. albicans yeast cells and hyphae.

    Article  CAS  PubMed  Google Scholar 

  92. van de Veerdonk, F. L. et al. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur. J. Immunol. 41, 2260–2268 (2011). This investigation demonstrates the importance of the inflammasome in driving protective T H 1-type and T H 17-type responses during fungal infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van der Graaf, C. A., Netea, M. G., Verschueren, I., van der Meer, J. W. & Kullberg, B. J. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect. Immun. 73, 7458–7464 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheng, S. C. et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leukoc. Biol. 90, 357–366 (2011). This article describes the inflammasome–IL-1β–T H 17 cell axis as an important mechanism that is capable of discriminating C. albicans colonization from invasion at the mucosal level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bi, L. et al. CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans. J. Biol. Chem. 285, 25969–25977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kruppa, M., Greene, R. R., Noss, I., Lowman, D. W. & Williams, D. L. C. albicans increases cell wall mannoprotein, but not mannan, in response to blood, serum and cultivation at physiological temperature. Glycobiology 21, 1173–1180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scherwitz, C. Ultrastructure of human cutaneous candidosis. J. Invest. Dermatol. 78, 200–205 (1982).

    Article  CAS  PubMed  Google Scholar 

  100. Ray, T. L. & Payne, C. D. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect. Immun. 56, 1942–1949 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kumamoto, C. A. & Vinces, M. D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Moyes, D. L. et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8, 225–235 (2010). A seminal study describing the mechanisms through which epithelial cells can discriminate between colonizing yeast cells and invading hyphae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, L. & Dongari-Bagtzoglou, A. Epithelial GM-CSF induction by Candida glabrata. J. Dent. Res. 88, 746–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Weindl, G. et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Invest. 117, 3664–3672 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Moreno-Ruiz, E. et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11, 1179–1189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martin, R., Wachtler, B., Schaller, M., Wilson, D. & Hube, B. Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections. Int. J. Med. Microbiol. 301, 417–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Dalle, F. et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol. 12, 248–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Park, H. et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell. Microbiol. 7, 499–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Brand, A. et al. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot. Cell 7, 712–720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hube, B. et al. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun. 65, 3529–3538 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Naglik, J. R., Challacombe, S. J. & Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ibrahim, A. S. et al. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect. Immun. 63, 1993–1998 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Weindl, G., Wagener, J. & Schaller, M. Interaction of the mucosal barrier with accessory immune cells during fungal infection. Int. J. Med. Microbiol. 301, 431–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Eyerich, K. et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J. Invest. Dermatol. 128, 2640–2645 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Ng, W. F. et al. Impaired TH17 responses in patients with chronic mucocutaneous candidiasis with and without autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J. Allergy Clin. Immunol. 126, 1006–1015. e4 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010). This paper describes the link between STAT3 mutations and defective T H 17 cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–30 8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. de Beaucoudrey, L. et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells. J. Exp. Med. 205, 1543–1550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. van de Veerdonk, F. L. et al. Milder clinical hyperimmunoglobulin E syndrome phenotype is associated with partial interleukin-17 deficiency. Clin. Exp. Immunol. 159, 57–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Plantinga, T. S. et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Fidel, P. L. Jr. History and update on host defense against vaginal candidiasis. Am. J. Reprod. Immunol. 57, 2–12 (2007).

    Article  PubMed  Google Scholar 

  126. Yano, J., Lilly, E., Barousse, M. & Fidel, P. L. Jr. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun. 78, 5126–5137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  128. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol. 8, 942–949 (2007).

    Article  CAS  Google Scholar 

  129. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. McGeachy, M. J. & Cua, D. J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Joly, S. et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183, 3578–3581 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Cheng, S. C. et al. Candida albicans dampens host defense by downregulating IL-17 production. J. Immunol. 185, 2450–2457 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. van de Veerdonk, F. L. et al. Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1β production by the fungal pathogen Candida albicans. J. Infect. Dis. 199, 1087–1096 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Eyerich, S. et al. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol. 41, 1894–1901 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1β and IL-18 secretion in an autocrine way. Proc. Natl Acad. Sci. USA 105, 8067–8072 (2008). An important study highlighting the link between the commensal microbial flora and mucosal T H 17 cell immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Ivanov, II. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.A.R.G. and A.J.P.B. are supported by the UK Wellcome Trust (grant 080088), the European Commission (through the ALLFUN project; the FINSysB project grant PITN-GA-2008-214004; and the STRIFE project grant ERC-2009-AdG-249793) and the UK Biotechnology and Biological Sciences Research Council (grant BB/F00513X/1). M.G.N. was supported by a Vici grant from the Netherlands Organization for Scientific Research (NWO). F.L.v.d.V. was supported by a Veni grant from NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai G. Netea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Pseudohyphae

Cells produced by a series of synchronous budding events in which each daughter cell remains attached to its mother cell, thus forming a chain of elongated yeast cells with obvious constrictions at the septal junctions.

Candidiasis

A mucosal fungal infection that can be caused by any of the pathogenic Candida species, of which Candida albicans is the most common.

Adhesins

Cell surface glycoproteins in the fungal cell wall that facilitate microbial adhesion or adherence to other cells or to an inanimate surface; virulence factors.

Invasins

Proteins that are produced by microorganisms to promote microbial penetration into mammalian cells.

Bud scars

Scars located on the surface of the mother cell, representing the remnants of the septum formed between mother and daughter cells during cell division.

Muramyl dipeptide

The minimal structural unit of peptidoglycan in Gram-positive bacteria that is recognized by the intracellular receptor NOD2 (nucleotide-binding oligomerization domain-containing 2).

Cyclin

A family of proteins for which expression is normally periodic within the cell cycle and which control the progression of cells through the cell cycle by activating cyclin-dependent kinases.

Septins

Evolutionarily conserved proteins that have essential functions in bud evagination and cytokinesis, and more subtle roles throughout the cell cycle.

Chlamydospores

Thick-walled spores that are produced by Candida albicans on carbohydrate-rich media in vivo. The presence of chlamydospores in human tissues has yet to be firmly established.

Genotoxic

Pertaining to a substance: able to cause mutations by damaging DNA.

Macrophages

White blood cells produced by the differentiation of monocytes in tissues. Monocytes and macrophages are phagocytes and are important for host defence against Candida albicans infection.

Zymosan

A cell wall preparation that is obtained from the yeast Saccharomyces cerevisiae and comprises a protein–carbohydrate complex rich in β-1,3-glucan.

Myeloid cells

A class of important innate immune cells that are derived from bone marrow and consist of monocytic populations (monocytes and their precursors) and granulocytic populations (granulocytes and their precursors).

T helper 17 cell

(TH17 cell). A newly discovered subset of TH cells that produce interleukin-17 (IL-17), IL-21 and IL-22. These are developmentally distinct from TH1 and TH2 cells and are thought to have a protective role in fungal infection.

Neutrophils

Phagocytic cells that are one of the first inflammatory cell types to migrate to the site of inflammation.

Defensins

A group of small antimicrobial peptides that have direct activity against microorganims.

Inflammasome

A protein platform that triggers activation of inflammatory caspases, which process pro-interleukin-1β.

IL-1β

(Interleukin-1β). A polypeptide that is produced after infection, injury or antigenic challenge and is highly pro-inflammatory. IL-1β is primarily produced by macrophages through a pathway that is tightly regulated by the inflammasome.

T helper 1-type

(TH1-type). A response characterized by the TH1-type cytokine, interferon-γ.

E-cadherin

One of the cadherin proteins, which are a class of type-1 transmembrane protein that plays an important part in cell-to cell adhesion in mammalian tissues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gow, N., van de Veerdonk, F., Brown, A. et al. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10, 112–122 (2012). https://doi.org/10.1038/nrmicro2711

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2711

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology