Key Points
-
Proteolysis is a fast response to environmental changes. It is used by bacteria to control regulatory networks.
-
Proteolysis is an irreversible process and is therefore tightly controlled. The enzymes that carry out regulated proteolysis can coordinate substrate binding and degradation and are capable of targeting only a subset of proteins.
-
In Gram-negative bacteria, proteolysis regulates a large number of cellular processes such as the synthesis of lipopolysaccharides and the ability to grow at increased temperatures.
-
Proteolysis is crucial in the response to temperature shifts, starvation, stationary phase and envelope stress.
-
Proteolysis is a major factor in controlling regulatory circuits such as the SOS response and bacterial differentiation.
Abstract
Most bacteria live in a dynamic environment where temperature, availability of nutrients and the presence of various chemicals vary, which requires rapid adaptation. Many of the adaptive changes are determined by changes in the transcription of global regulatory networks, but this response is slow because most bacterial proteins are stable and their concentration remains high even after transcription slows down. To respond rapidly, an additional level of regulation has evolved: the degradation of key proteins. However, as proteolysis is an irreversible process, it is subject to tight regulation of substrate binding and degradation. Here we review the roles of the proteolytic enzymes in Gram-negative bacteria and how these enzymes can be regulated to target only a subset of proteins.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kanemori, M., Yanagi, H. & Yura, T. The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J. Bacteriol. 181, 3674–3680 (1999).
Inagawa, T., Kato, J., Niki, H., Karata, K. & Ogura, T. Defective plasmid partition in ftsH mutants of Escherichia coli. Mol. Genet. Genomics 265, 755–762 (2001).
Santos, D. & De Almeida, D. F. Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J. Bacteriol. 124, 1502–1507 (1975).
Herman, C. et al. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc. Natl Acad. Sci. USA 90, 10861–10865 (1993).
Markovitz, A. Regulatory mechanisms for synthesis of capsular polysaccharide in mucoid mutants of Escherichia coli K12. Proc. Natl Acad. Sci. USA 51, 239–246 (1964).
Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl Acad. Sci. USA 98, 12712–12717 (2001).
Sousa, M. C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633–643 (2000).
Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295–317 (1999).
Sauer, R. T. & Baker, T. A. AAA+ Proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011). State of the art review on structure–function relationship and the mechanism of protein degradation by AAA+ proteases.
Chung, C. H. & Goldberg, A. L. The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc. Natl Acad. Sci. USA 78, 4931–4935 (1981).
Simon, L. D., Gottesman, M., Tomczak, K. & Gottesman, S. Hyperdegradation of proteins in Escherichia coli rho mutants. Proc. Natl Acad. Sci. USA 76, 1623–1627 (1979).
Baker, T. A. & Sauer, R. T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647–653 (2006). Review on degrons and binding domains of proteases
Gur, E. & Sauer, R. T. Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev. 22, 2267–2277 (2008). Characterization of the substrate specificity of the protease Lon.
Akiyama, Y., Kihara, A., Tokuda, H. & Ito, K. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J. Biol. Chem. 271, 31196–31201 (1996).
Zaltsman, A., Feder, A. & Adam, Z. Developmental and light effects on the accumulation of FtsH protease in Arabidopsis chloroplasts–implications for thylakoid formation and photosystem II maintenance. Plant J. 42, 609–617 (2005).
Lies, M. & Maurizi, M. R. Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli. J. Biol. Chem. 283, 22918–22929 (2008).
Moore, S. D. & Sauer, R. T. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol. 58, 456–466 (2005).
Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).
Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996). Describes the first identification of a protease-tagging system.
Keiler, K. C. & Sauer, R. T. Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol. Chem. 271, 2589–2593 (1996).
Farrell, C. M., Grossman, A. D. & Sauer, R. T. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57, 1750–1761 (2005).
Martin, A., Baker, T. A. & Sauer, R. T. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Mol. Cell 27, 41–52 (2007).
Siddiqui, S. M., Sauer, R. T. & Baker, T. A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004).
Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).
Barkow, S. R., Levchenko, I., Baker, T. A. & Sauer, R. T. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 16, 605–612 (2009).
Herman, C., Prakash, S., Lu, C. Z., Matouschek, A. & Gross, C. A. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11, 659–669 (2003).
Koodathingal, P. et al. ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J. Biol. Chem. 284, 18674–18684 (2009).
Gur, E. & Sauer, R. T. Degrons in protein substrates program the speed and operating efficiency of the AAA+ Lon proteolytic machine. Proc. Natl Acad. Sci. USA 106, 18503–18508 (2009).
Levchenko, I., Seidel, M., Sauer, R. T. & Baker, T. A. A specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000).
Zhou, Y., Gottesman, S., Hoskins, J. R., Maurizi, M. R. & Wickner, S. The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev. 15, 627–637 (2001).
Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).
Erbse, A., et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).
Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).
Wang, K. H., Roman-Hernandez, G., Grant, R. A., Sauer, R. T. & Baker, T. A. The molecular basis of N-end rule recognition. Mol. Cell 32, 406–414 (2008). Focuses on the adaptor proteins that increase binding of N-end rule substrates to proteases.
Schuenemann, V. J. et al. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep. 10, 508–514 (2009).
Ninnis, R. L., Spall, S. K., Talbo, G. H., Truscott, K. N. & Dougan, D. A. Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J. 28, 1732–1744 (2009).
Wah, D. A. et al. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12, 355–363 (2003).
Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA 98, 10584–10589 (2001).
Rosen, R. et al. Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol. Lett. 207, 9–12 (2002).
Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138 (2001).
Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).
Lorimer, G. H. & Todd, M. J. GroE structures galore. Nature Struct. Biol. 3, 116–121 (1996).
Mogk, A. et al. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934–6949 (1999).
Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565–587 (2003).
Jenal, U. & Hengge-Aronis, R. Regulation by proteolysis in bacterial cells. Curr. Opin. Microbiol. 6, 163–172 (2003).
Finlay, B. B. et al. Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol. Microbiol. 2, 757–766 (1988).
Krishnapillai, V. Uridinediphosphogalactose-4-epimerase deficiency in Salmonella typhimurium and its correction by plasmoid-borne galactose genes of Escherichia coli K-12: effects on mouse virulence, phagocytosis, and serum sensitivity. Infect. Immun. 4, 177–188 (1971).
Munford, R. S. Severe sepsis and septic shock: the role of gram-negative bacteremia. Annu. Rev. Pathol. 1, 467–496 (2006).
Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).
Fuhrer, F. et al. Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease. J. Mol. Biol. 372, 485–496 (2007).
Ogura, T. et al. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 31, 833–844 (1999). Identifies the role of the FtsH protease in the biosynthesis of outer membrane components, thus explaining the importance of this protein in E. coli.
Belunis, C. J. & Raetz, C. R. Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli. J. Biol. Chem. 267, 9988–9997 (1992).
Katz, C. & Ron, E. Z. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J. Bacteriol. 190, 7117–7122 (2008).
Biran, D., Brot, N., Weissbach, H. & Ron, E. Z. Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J. Bacteriol. 177, 1374–1379 (1995).
Ron, E. Z. & Davis, B. D. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J. Bacteriol. 107, 391–396 (1971).
Biran, D., Gur, E., Gollan, L. & Ron, E. Z. Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol. Microbiol. 37, 1436–1443 (2000). Describes the role of proteolysis in regulating the growth rate of E. coli at high temperatures.
Ron, E. Z. & Shani, M. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J. Bacteriol. 107, 397–400 (1971).
Ron, E. Z., Alajem, S., Biran, D. & Grossman, N. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Antonie Van Leeuwenhoek 58, 169–174 (1990).
Gur, E., Biran, D., Gazit, E. & Ron, E. Z. In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Mol. Microbiol. 46, 1391–1397 (2002).
Zhou, Y. N., Kusukawa, N., Erickson, J. W., Gross, C. A. & Yura, T. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J. Bacteriol. 170, 3640–3649 (1988).
Shenhar, Y., Rasouly, A., Biran, D. & Ron, E. Z. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts. Environ. Microbiol. 11, 2989–2997 (2009).
Herman, C., Thévenet, D., D'Ari, R. & Bouloc, P. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl Acad. Sci. USA 92, 3516–3520 (1995).
Tomoyasu, T. et al. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 14, 2551–2560 (1995). References 62 and 63 identify the protease involved in the degradation of σ32, indicating the importance of proteolysis in the heat shock response.
Tatsuta, T., Joob, D. M., Calendar, R., Akiyama, Y. & Ogura, T. Evidence for an active role of the DnaK chaperone system in the degradation of σ32. FEBS Lett. 478, 271–275 (2000).
Blaszczak, A., Georgopoulos, C. & Liberek, K. On the mechanism of FtsH-dependent degradation of the σ32 transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine. Mol. Microbiol. 31, 157–166 (1999).
Nakahigashi, K., Ron, E. Z., Yanagi, H. & Yura, T. Differential and independent roles of a σ32 homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens. J. Bacteriol. 181, 7509–7515 (1999).
Straus, D. B., Walter, W. A. & Gross, C. A. The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3, 2003–2010 (1989).
Guisbert, E., Herman, C., Lu, C. Z. & Gross, C. A. A chaperone network controls the heat shock response in E. coli. Genes Dev. 18, 2812–2821 (2004).
Straus, D., Walter, W. & Gross, C. A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4, 2202–2209 (1990).
Tatsuta, T. et al. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of σ32in vivo. Mol. Microbiol. 30, 583–593 (1998).
Tomoyasu, T., Ogura, T., Tatsuta, T. & Bukau, B. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30, 567–581 (1998).
Morita, M., Kanemori, M., Yanagi, H. & Yura, T. Heat-induced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J. Bacteriol. 181, 401–410 (1999).
Nonaka, G., Blankschien, M., Herman, C., Gross, C. A. & Rhodius, V. A. Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20, 1776–1789 (2006).
Dartigalongue, C., Missiakas, D. & Raina, S. Characterization of the Escherichia coli σE regulon. J. Biol. Chem. 23, 20866–20875 (2001).
Campbell, E. A. et al. Crystal structure of Escherichia coli σE with the cytoplasmic domain of its anti-sigma RseA. Mol. Cell 11, 1067–1078 (2003).
De Las Penas, A., Connolly, L. & Gross, C. A. SigmaE is an essential sigma factor in Escherichia coli. J. Bacteriol. 179, 6862–6864 (1997).
Sohn, J., Grant, R. A. & Sauer, R. T. Allosteric activation of DegS, a stress sensor PDZ protease. Cell 131, 572–583 (2007).
Mecsas, J., Rouviere, P. E., Erickson, J. W., Donohue, T. J. & Gross, C. A. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev. 7, 2618–2628 (1993).
Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117, 483–494 (2004).
Ades, S. E., Connolly, L. E., Alba, B. M. & Gross, C. A. The Escherichia coli σE -dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev. 13, 2449–2461 (1999). Describes the complex cascade of events resulting from envelope stress and controlled by proteolysis
Akiyama, Y., Kanehara, K. & Ito, K. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J. 23, 4434–4442 (2004).
Flynn, J. M., Levchenko, I., Sauer, R. T. & Baker, T. A. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18, 2292–2301 (2004).
Cezairliyan, B. O. & Sauer, R. T. Inhibition of regulated proteolysis by RseB. Proc. Natl Acad. Sci. USA 104, 3771–3776 (2007).
Chaba, R. et al. Signal integration by DegS and RseB governs the E-mediated envelope stress response in Escherichia coli. Proc. Natl Acad. Sci. USA 108, 2106–2111 (2011).
Wollmann, P. & Zeth, K. The structure of RseB: a sensor in periplasmic stress response of E. coli. J. Mol. Biol. 372, 927–941 (2007).
Hengge, R. Proteolysis of σS (RpoS) and the general stress response in Escherichia coli. Res. Microbiol. 160, 667–676 (2009). An up-to-date review of the role of proteolysis in the general stress response.
Lange, R. & Hengge-Aronis, R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol. 5, 49–59 (1991).
Mika, F. & Hengge, R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of σS (RpoS) in E. coli. Genes Dev. 19, 2770–2781 (2005).
Bougdour, A., Wickner, S. & Gottesman, S. Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. Genes Dev. 20, 884–897 (2006).
Bougdour, A. & Gottesman, S. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc. Natl Acad. Sci. USA 104, 12896–12901 (2007).
Tu, X., Latifi, T., Bougdour, A., Gottesman, S. & Groisman, E. A. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc. Natl Acad. Sci. USA 103, 13503–13508 (2006).
Bougdour, A., Cunning, C., Baptiste, P. J., Elliott, T. & Gottesman, S. Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68, 298–313 (2008).
Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).
Pruteanu, M. & Baker, T. A. Proteolysis in the SOS response and metal homeostasis in Escherichia coli. Res. Microbiol. 160, 677–683 (2009). Shows that regulation of the SOS response by proteolysis is essential to prevent cellular damage by toxic proteins.
Pruteanu, M. & Baker, T. A. Controlled degradation by ClpXP protease tunes the levels of the excision repair protein UvrA to the extent of DNA damage. Mol. Microbiol. 71, 912–924 (2009).
Janion, C. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int. J. Biol. Sci. 4, 338–344 (2008).
Little, J. W. Autodigestion of lexA and phage lambda repressors. Proc. Natl Acad. Sci. USA 81, 1375–1379 (1984).
Neher, S. B., Flynn, J. M., Sauer, R. T. & Baker, T. A. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev. 17, 1084–1089 (2003).
Kim, B. & Little, J. W. LexA and lambda Cl repressors as enzymes: specific cleavage in an intermolecular reaction. Cell 73, 1165–1173 (1993).
Mizrahi, I., Dagan, M., Biran, D. & Ron, E. Z. Potential use of toxic thermolabile proteins to study protein quality control systems. Appl. Environ. Microbiol. 73, 5951–5953 (2007).
Wu, W. F., Zhou, Y. & Gottesman, S. Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J. Bacteriol. 181, 3681–3687 (1999).
Hasegawa, K., Yoshiyama, K. & Maki, H. Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells 13, 459–469 (2008).
Frank, E. G., Ennis, D. G., Gonzalez, M., Levine, A. S. & Woodgate, R. Regulation of SOS mutagenesis by proteolysis. Proc. Natl Acad. Sci. USA 93, 10291–10296 (1996).
Al Mamun, A. A. & Humayun, M. Z. Spontaneous mutagenesis is elevated in protease-defective cells. Mol. Microbiol. 71, 629–639 (2009).
Schlothauer, T., Mogk, A., Dougan, D. A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl Acad. Sci. USA 100, 2306–2311 (2003).
Wickner, S., Maurizi, M. R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).
Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl Acad. Sci. USA 105, 3076–3081 (2008).
Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).
Bissonnette, S. A., Rivera-Rivera, I., Sauer, R. T. & Baker, T. A. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Mol. Microbiol. 75, 1539–1549 (2010).
Curtis, P. D. & Brun, Y. V. Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol. Mol. Biol. Rev. 74, 13–41 (2010).
Jenal, U. The role of proteolysis in the Caulobacter crescentus cell cycle and development. Res. Microbiol. 160, 687–695 (2009).
Collier, J., McAdams, H. H. & Shapiro, L. A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc. Natl Acad. Sci. USA 104, 17111–17116 (2007).
Iniesta, A. A. & Shapiro, L. A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc. Natl Acad. Sci. USA 105, 16602–16607 (2008). Shows that regulation of differentiation in Caulobacter crescentus results from the localization of a proteolytic complex that controls the initiation of cell division.
Suno, R. et al. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol. Cell 22, 575–585 (2006).
Glynn, S. E., Martin, A., Nager, A. R., Baker, T. A. & Sauer, R. T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).
Wang, T. et al. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17, 1377–1385 (2009).
Li, D. H. et al. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem. Biol. 17, 959–969 (2010).
Hu, G. et al. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol. Microbiol. 59, 1417–1428 (2006).
Acknowledgements
We thank the anonymous reviewers and the editor for their helpful suggestions. Work in the authors' laboratory was supported by a DIP grant from the Deutsche Forschungsgemeinschaft (to E.Z.R. and D.B.), by a Marie Curie International Reintegration Grant (IRG) and by a German–Israeli Foundation (GIF) Young grant (to E.G.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- N-end rule
-
The regulation of protein stability by the first amino acid of a protein. For example, the presence of a Lys or Arg severely decreases the half-life of the proteins through regulated proteolysis.
- C1 compounds
-
Compounds that contain one C atom and are more reduced than CO2. Such compounds include methane, methanol and formaldehyde.
- Stringent response
-
The physiological changes that are elicited by amino acid starvation.
Rights and permissions
About this article
Cite this article
Gur, E., Biran, D. & Ron, E. Regulated proteolysis in Gram-negative bacteria — how and when?. Nat Rev Microbiol 9, 839–848 (2011). https://doi.org/10.1038/nrmicro2669
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2669
This article is cited by
-
Exploring the diversity and evolutionary strategies of prophages in Hyphomicrobiales, comparing animal-associated with non-animal-associated bacteria
BMC Microbiology (2024)
-
Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria
Journal of Microbiology (2023)
-
Temperature Matters: Bacterial Response to Temperature Change
Journal of Microbiology (2023)
-
Protein degradation control and regulation of bacterial survival and pathogenicity: the role of protein degradation systems in bacteria
Molecular Biology Reports (2021)
-
Strain-specific transcriptional and posttranscriptional regulation of heat-labile toxin expression by enterotoxigenic Escherichia coli
Brazilian Journal of Microbiology (2020)