Key Points
-
The dynamic reorganization and polarization of the actin cytoskeleton underpins the growth and morphogenesis of filamentous fungi.
-
Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi. These processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport.
-
New approaches for imaging filamentous actin (F-actin) in living cells using the reporter Lifeact (an actin-binding peptide fused to GFP) have recently been developed for filamentous fungi. Live-cell imaging of F-actin, together with mutational studies, has yielded key insights into cell polarity, tip growth and long-distance transport.
-
F-actin organization and dynamics in filamentous fungi possess some features that have not been observed in Saccharomyces cerevisiae. For example, some actin patches exhibit bidirectional movement, actin cables can be long (5–20 μm), the polarized organization of actin in hyphal tips undergoes a radical change in organization during the transition from a germ tube to a mature vegetative hypha, and complex actin arrays show retrograde movement in germ tubes.
-
The concentration of F-actin in the core of the vesicle supply centre (the Spitzenkörper) within the tips of growing vegetative hyphae may represent a fourth type of higher-order structure, found in filamentous fungi but absent from S. cerevisiae. The precise roles of the Spitzenkörper remain to be elucidated.
Abstract
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Deletion of the small GTPase rac1 in Trichoderma reesei provokes hyperbranching and impacts growth and cellulase production
Fungal Biology and Biotechnology Open Access 18 October 2019
-
The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride
Scientific Reports Open Access 13 August 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
May, G. S. & Adams, T. H. The importance of fungi to man. Genome Res. 7, 1041–1044 (1997).
Read, N. D. in Fungi and the Environment (eds Gadd, G. M., Watkinson, S. C. & Dyer, P. S.) 38–57 (Cambridge Univ. Press, Cambridge, UK, 2006).
Liu, Y. J. & Hall, B. D. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc. Natl Acad. Sci. USA 101, 4507–4512 (2004).
Bartnicki-Garcia, S. in Molecular Biology of Fungal Development (ed. Osiewaqcz, H. D.) 29–58 (Marcel Dekker, New York, 2002).
Bartnicki-Garcia, S., Bracker, C. E., Gierz, G., Lopez-Franco, R. & Lu, H. Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys. J. 79, 2382–2390 (2000).
Lew, R. R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nature Rev. Microbiol. 9, 509–518 (2011).
Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p- dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol. 143, 1931–1945 (1998).
Schott, D. H., Collins, R. N. & Bretscher, A. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J. Cell Biol. 156, 35–39 (2002).
Motegi, F., Arai, R. & Mabuchi, I. Identification of two type V myosins in fission yeast, one of which functions in polarized cell growth and moves rapidly in the cell. Mol. Biol. Cell 12, 1367–1380 (2001).
Harris, S. D. et al. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot. Cell 4, 225–229 (2005).
Lichius, A., Berepiki, A. & Read, N. D. Form follows function – the versatile fungal cytoskeleton. Fungal Biol. 115, 518–540 (2011).
Knechtle, P., Wendland, J. & Philippsen, P. The SH3/PH domain protein AgBoi1/2 collaborates with the Rho-type GTPase AgRho3 to prevent nonpolar growth at hyphal tips of Ashbya gossypii. Eukaryot. Cell 5, 1635–1647 (2006).
Torralba, S., Raudaskoski, M., Pedregosa, A. M. & Laborda, F. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144, 45–53 (1998).
Pantazopoulou, A. & Penalva, M. A. Organization and dynamics of the Aspergillus nidulans Golgi during apical extension and mitosis. Mol. Biol. Cell 20, 4335–4347 (2009).
Taheri-Talesh, N. et al. The tip growth apparatus of Aspergillus nidulans. Mol. Biol. Cell 19, 1439–1449 (2008). Live-cell analysis of hyphal-tip organization using a combination of markers for actin, endocytosis and exocytosis.
Araujo-Bazan, L., Penalva, M. A. & Espeso, E. A. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol. Microbiol. 67, 891–905 (2008). The demonstration that endocytic components are polarized and form a subapical ring at hyphal tips.
Upadhyay, S. & Shaw, B. D. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol. Microbiol. 68, 690–705 (2008). An article that highlights the importance of endocytosis for correct polar growth and describes a subapical ring of endocytic components at hyphal tips.
Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A. J. Cell Biol. 137, 399–416 (1997).
Barja, F., Chappuis, M. L. & Turian, G. Differential effects of anticytoskeletal compounds on the localization and chemical patterns of actin in germinating conidia of Neurospora crassa. FEMS Microbiol. Lett. 107, 261–266 (1993).
Harris, S. D., Morrell, J. L. & Hamer, J. E. Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136, 517–532 (1994).
Novick, P. & Botstein, D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40, 405–416 (1985).
Virag, A. & Griffiths, A. J. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet. Biol. 41, 213–225 (2004).
Rida, P. C. G., Nishikawa, A., Won, G. Y. & Dean, N. Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans. Mol. Biol. Cell 17, 4364–4378 (2006).
Suelmann, R. & Fischer, R. Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil. Cytoskeleton 45, 42–50 (2000).
Dominguez, R. & Holmes, K. C. Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011).
Kovar, D. R., Sirotkin, V. & Lord, M. Three's company: the fission yeast actin cytoskeleton. Trends Cell Biol. 21, 177–187 (2011).
Moseley, J. B. & Goode, B. L. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70, 605–645 (2006).
Harris, S. D. & Momany, M. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 41, 391–400 (2004).
Seiler, S. & Plamann, M. The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol. Biol. Cell 14, 4352–4364 (2003).
Berepiki, A., Lichius, A., Shoji, J. Y., Tilsner, J. & Read, N. D. F-actin dynamics in Neurospora crassa. Eukaryot. Cell 9, 547–557 (2010). The first study to use the Lifeact probe to provide detailed live-cell imaging of F-actin localization and dynamics in germlings and vegetative hyphae of N. crassa.
Delgado-Alvarez, D. L. et al. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet. Biol. 47, 573–586 (2010). An in-depth description of the localization of F-actin and various ABPs in hyphae of N. crassa.
Howard, R. J. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J. Cell Sci. 48, 89–103 (1981). A classic paper providing the first description of the ultrastructural localization of actin in hyphal tips.
Bourett, T. M. & Howard, R. J. Ultrastructural immunolocalization of actin in a fungus. Protoplasma 163, 199–202 (1991).
Roberson, R. W. The actin cytoskeleton in hyphal cells of Sclerotium rolfsii. Mycologia 84, 41–51 (1992).
Adams, A. E. & Pringle, J. R. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J. Cell Biol. 98, 934–945 (1984).
Kilmartin, J. V. & Adams, A. E. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98, 922–933 (1984).
Marks, J., Hagan, I. M. & Hyams, J. S. Growth polarity and cytokinesis in fission yeast: the role of the cytoskeleton. J. Cell Sci. 5, 229–241 (1986).
Yokoyama, K., Kaji, H., Nishimura, K. & Miyaji, M. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J. Gen. Microbiol. 136, 1067–1075 (1990).
Garrill, A. & Suei, S. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. Protoplasma 232, 165–172 (2008).
Barja, F., Thi, B. N. & Turian, G. Localization of actin and characterization of its isoforms in the hyphae of Neurospora crassa. FEMS Microbiol. Lett. 61, 19–24 (1991).
Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855–2862 (1993).
Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).
Munn, A. L., Stevenson, B. J., Geli, M. I. & Riezman, H. End5, End6, and End7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 6, 1721–1742 (1995).
Robertson, A. S., Smythe, E. & Ayscough, K. R. Functions of actin in endocytosis. Cell. Mol. Life Sci. 66, 2049–2065 (2009).
Huckaba, T. M., Gay, A. C., Pantalena, L. F., Yang, H. C. & Pon, L. A. Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 167, 519–530 (2004).
Altschuler, S. J., Marco, E., Wedlich-Soldner, R., Li, R. & Wu, L. F. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell 129, 411–422 (2007).
Penalva, M. A. Endocytosis in filamentous fungi: Cinderella gets her reward. Curr. Opin. Microbiol. 13, 684–692 (2010).
Steinberg, G. On the move: endosomes in fungal growth and pathogenicity. Nature Rev. Microbiol. 5, 309–316 (2007).
Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003). A landmark investigation showing that different types of patch behaviour are determined by the varying protein composition of actin patches.
Sanchez-Ferrero, J. C. & Peñalva, M. A. in The Aspergilli: Genomics, Medical Applications, Biotechnology, and Research Methods (eds Osmani, S. & Goldman, G.) 177–195 (CRC Press, Boca Raton, 2007).
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).
Li, R. Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell Biol. 136, 649–658 (1997).
Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538 (1999).
Jonsdottir, G. A. & Li, R. Dynamics of yeast myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).
Sun, Y. D., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11, 33–46 (2006).
Ayscough, K. R. et al. Interactions between the yeast SM22 homologue Scp1 and actin demonstrate the importance of actin bundling in endocytosis. J. Biol. Chem. 283, 15037–15046 (2008).
Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nature Cell Biol. 11, 1039–1042 (2009).
Ayscough, K. R. Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton. Curr. Biol. 10, 1587–1590 (2000).
Walther, T. C. et al. Eisosomes mark static sites of endocytosis. Nature 439, 998–1003 (2006).
Grossman, G. et al. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183, 1075–1088 (2008).
Reijnst, P., Walther, A. & Wendland, J. Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans. Yeast 28, 331–338 (2011).
Seger, S., Rischatsch, R. & Philippsen, P. Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii. J. Cell Sci. 124, 1629–1634 (2011).
Vangelatos, I. et al. Eisosome organization in the filamentous ascomycete Aspergillus nidulans. Eukaryot. Cell 9, 1441–1454 (2010).
Borkovich, K. A. et al. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68, 1–108 (2004).
Lees-Miller, J. P., Henry, G. & Helfman, D. M. Identification of Act2, an essential gene in the fission yeast Schizosaccharomyces pombe that encodes a protein related to actin. Proc. Natl Acad. Sci. USA 89, 80–83 (1992).
Roca, M. G., Kuo, H. C., Lichius, A., Freitag, M. & Read, N. D. Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Eukaryot. Cell 9, 1171–1183 (2010).
Schwob, E. & Martin, R. P. New yeast actin-like gene required late in the cell cycle. Nature 355, 179–182 (1992).
Whiteway, M. et al. Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol. Microbiol. 75, 1182–1198 (2010).
Martin, A. C. et al. Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function. J. Cell Biol. 168, 315–328 (2005).
Robertson, A. S. et al. The WASP homologue Las17 activates the novel actin-regulatory activity of Ysc84 to promote endocytosis in yeast. Mol. Biol. Cell 20, 1618–1628 (2009).
Pelham, R. J. Jr & Chang, F. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe. Nature Cell Biol. 3, 235–244 (2001).
Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21, 2894–2904 (2010).
Doyle, T. & Botstein, D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl Acad. Sci. USA 93, 3886–3891 (1996).
Smith, M. G., Swamy, S. R. & Pon, L. A. The life cycle of actin patches in mating yeast. J. Cell Sci. 114, 1505–1513 (2001).
Waddle, J. A., Karpova, T. S., Waterston, R. H. & Cooper, J. A. Movement of cortical actin patches in yeast. J. Cell Biol. 132, 861–870 (1996).
Abenza, J. F., Pantazopoulou, A., Rodriguez, J. M., Galindo, A. & Penalva, M. A. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10, 57–75 (2009).
Wedlich-Soldner, R., Bolker, M., Kahmann, R. & Steinberg, G. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J. 19, 1974–1986 (2000).
Jorde, S., Walther, A. & Wendland, J. The Ashbya gossypii fimbrin SAC6 is required for fast polarized hyphal tip growth and endocytosis. Microbiol. Res. 166, 137–145 (2011).
Higuchi, Y., Shoji, J. Y., Arioka, M. & Kitamoto, K. Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. Eukaryot. Cell 8, 37–46 (2009).
Hervas-Aguilar, A. & Penalva, M. A. Endocytic machinery protein SlaB is dispensable for polarity establishment but necessary for polarity maintenance in hyphal tip cells of Aspergillus nidulans. Eukaryot. Cell 9, 1504–1518 (2010).
Balguerie, A., Sivadon, P., Bonneu, M. & Aigle, M. Rvs167p, the budding yeast homolog of amphiphysin, colocalizes with actin patches. J. Cell Sci. 112, 2529–2537 (1999).
Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).
Konopka, J. B., Douglas, L. M. & Martin, S. W. BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infec. Immun. 77, 4150–4160 (2009).
Walther, A. & Wendland, J. Polarized hyphal growth in Candida albicans requires the Wiskott-Aldrich syndrome protein homolog Wal1p. Eukaryot. Cell 3, 471–482 (2004).
Walther, A. & Wendland, J. Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J. Cell Sci. 117, 4947–4958 (2004).
Oberholzer, U., Marcil, A., Leberer, E., Thomas, D. Y. & Whiteway, M. Myosin I is required for hypha formation in Candida albicans. Eukaryot. Cell 1, 213–228 (2002).
Osherov, N., Yamashita, R. A., Chung, Y. S. & May, G. S. Structural requirements for in vivo myosin I function in Aspergillus nidulans. J. Biol. Chem. 273, 27017–27025 (1998).
Yamashita, R. A., Osherov, N. & May, G. S. Localization of wild type and mutant class I myosin proteins in Aspergillus nidulans using GFP-fusion proteins. Cell Motil. Cytoskeleton 45, 163–172 (2000).
Yamashita, R. A. & May, G. S. Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J. Biol. Chem. 273, 14644–14648 (1998).
Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002).
Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002).
Fehrenbacher, K. L., Boldogh, I. R. & Pon, L. A. Taking the A-train: actin-based force generators and organelle targeting. Trends Cell Biol. 13, 472–477 (2003).
Rossanese, O. W. et al. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J. Cell Biol. 153, 47–62 (2001).
Hubbard, M. A. & Kaminskyj, S. G. Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology 154, 1544–1553 (2008).
Fuchs, F., Prokisch, H., Neupert, W. & Westermann, B. Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. J. Cell Sci. 115, 1931–1937 (2002).
Harris, S. D. Cdc42/Rho GTPases in fungi: variations on a common theme. Mol. Microbiol. 79, 1123–1127 (2011).
Kwon, M. J. et al. Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol. Microbiol. 79, 1151–1167 (2011).
Rasmussen, C. G. & Glass, N. L. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa. Eukaryot. Cell 4, 1913–1925 (2005).
Rasmussen, C. G. & Glass, N. L. Localization of RHO-4 indicates differential regulation of conidial versus vegetative septation in the filamentous fungus Neurospora crassa. Eukaryot. Cell 6, 1097–1107 (2007).
Mahlert, M., Leveleki, L., Hlubek, A., Sandrock, B. & Bolker, M. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol. Microbiol. 59, 567–578 (2006).
Rolke, Y. & Tudzynski, P. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development and pathogenicity. Mol. Microbiol. 68, 405–423 (2008).
Boyce, K. J., Hynes, M. J. & Andrianopoulos, A. Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J. Cell Sci. 116, 1249–1260 (2003).
Virag, A., Lee, M. P., Si, H. & Harris, S. D. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol. Microbiol. 66, 1579–1596 (2007).
Evangelista, M. et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).
Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).
Chesarone, M. A., DuPage, A. G. & Goode, B. L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Rev. Mol. Cell Biol. 11, 62–74 (2010).
Kovar, D. R., Kuhn, J. R., Tichy, A. L. & Pollard, T. D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).
Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002).
Zigmond, S. H. et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003).
Moseley, J. B. et al. A conserved mechanism for Bni1-and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol. Biol. Cell 15, 896–907 (2004).
Chang, F., Drubin, D. & Nurse, P. Cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J. Cell Biol. 137, 169–182 (1997).
Kovar, D. R., Wu, J. Q. & Pollard, T. D. Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Mol. Biol. Cell 16, 2313–2324 (2005).
Kemper, M. et al. A Bnr-like formin links actin to the spindle pole body during sporulation in the filamentous fungus Ashbya gossypii. Mol. Microbiol. 80, 1276–1295 (2011). This study demonstrates that Bnr2 has an important role in sporulation and that during sporulation it assembles actin cables from the nuclear spindle pole body.
Schmitz, H. P., Kaufmann, A., Kohli, M., Laissue, P. P. & Philippsen, P. From function to shape: a novel role of a formin in morphogenesis of the fungus Ashbya gossypii. Mol. Biol. Cell 17, 130–145 (2006).
Harris, S. D., Hamer, L., Sharpless, K. E. & Hamer, J. E. The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J. 16, 3474–3483 (1997).
Sharpless, K. E. & Harris, S. D. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell 13, 469–479 (2002).
Justa-Schuch, D., Heilig, Y., Richthammer, C. & Seiler, S. Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol. Microbiol. 76, 220–235 (2010). A detailed study analysing the role of RHO-4 and BUD-4 during cytokinesis in N. crassa , and establishing the contribution of the activators BUD-3 and RGF-3 to this process.
Li, C. R. et al. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. J. Cell Sci. 118, 2637–2648 (2005).
Martin, R., Walther, A. & Wendland, H. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot. Cell 4, 1712–1724 (2005).
Harispe, L., Portela, C., Scazzocchio, C., Penalva, M. A. & Gorfinkiel, L. Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot. Cell 7, 141–153 (2008).
Pearson, C. L., Xu, K. M., Sharpless, K. E. & Harris, S. D. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol. Biol. Cell 15, 3658–3672 (2004).
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).
Yang, H. C. & Pon, L. A. Actin cable dynamics in budding yeast. Proc. Natl Acad. Sci. USA 99, 751–756 (2002). A seminal live-cell-imaging paper providing the first details of actin cable dynamics in S. cerevisiae.
Weber, I., Gruber, C. & Steinberg, G. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15, 2826–2842 (2003).
Woo, M., Lee, K. & Song, K. MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. FEMS Microbiol. Lett. 218, 195–202 (2003).
Köhli, M., Galati, V., Boudier, K., Roberson, R. W. & Philippsen, P. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J. Cell Sci. 121, 3878–3889 (2008). A comprehensive quantitative study showing that localization of the polarisome and exocyst is correlated with growth rate.
Ayad-Durieux, Y., Knechtle, P., Goff, S., Dietrich, F. & Philippsen, P. A PAK-like protein kinase is required for maturation of young hyphae and septation in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 113, 4563–4575 (2000).
Knechtle, P., Kaufmann, A., Cavicchioli, D. & Philippsen, P. The Paxillin-like protein AgPxl1 is required for apical branching and maximal hyphal growth in Ashbya gossypii. Fungal Genet. Biol. 45, 829–838 (2008).
Araujo-Palomares, C. L., Riquelme, M. & Castro-Longoria, E. The polarisome component SPA-2 localizes at the apex of Neurospora crassa and partially colocalizes with the Spitzenkörper. Fungal Genet. Biol. 46, 551–563 (2009).
Virag, A. & Harris, S. D. Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot. Cell 5, 881–895 (2006).
Jones, L. A. & Sudbery, P. E. Spitzenkörper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryot. Cell 9, 1455–1465 (2010).
Pollard, T. D. Mechanics of cytokinesis in eukaryotes. Curr. Opin. Cell Biol. 22, 50–56 (2010).
Seiler, S. & Justa-Schuch, D. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol. Microbiol. 78, 1058–1076 (2010).
Si, H., Justa-Schuch, D., Seiler, S. & Harris, S. D. Regulation of septum formation by the Bud3–Rho4 GTPase module in Aspergillus nidulans. Genetics 185, 165–176 (2010).
Wang, J. et al. The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology 155, 2714–2725 (2009).
Lord, M., Laves, E. & Pollard, T. D. Cytokinesis depends on the motor domains of myosin-II in fission yeast but not in budding yeast. Mol. Biol. Cell 16, 5346–5355 (2005).
Vavylonis, D., Wu, J. Q., Hao, S., O'Shaughnessy, B. & Pollard, T. D. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319, 97–100 (2008).
Wu, J. Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science 310, 310–314 (2005).
Pollard, T. D. et al. Assembly of the cytokinetic contractile ring from a broad band of nodes in fission yeast. J. Cell Biol. 174, 391–402 (2006).
Wu, J. Q., Coffman, V. C., Nile, A. H., Lee, I. J. & Liu, H. Y. Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis. Mol. Biol. Cell 20, 5195–5210 (2009).
Oliferenko, S. & Mishra, M. Cytokinesis: catch and drag. Curr. Biol. 18, R247–R250 (2008).
Kreis, T. E., Winterhalter, K. H. & Birchmeier, W. In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc. Natl Acad. Sci. USA 76, 3814–3818 (1979).
Wehland, J. & Weber, K. Actin rearrangement in living cells revealed by microinjection of a fluorescent phalloidin derivative. Eur. J. Cell Biol. 24, 176–183 (1981).
Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105, 1473–1478 (1987).
Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods 5, 605–607 (2008). An outstanding report showing that F-actin can be visualized in a range of cell types using a 17 amino acid peptide (Lifeact) without any deleterious effects.
Riedl, J. et al. Lifeact mice for studying F-actin dynamics. Nature Methods 7, 168–169 (2010).
Ueda, T. et al. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol. 50, 1041–1048 (2009).
Vidali, L., Rounds, C. M., Hepler, P. K. & Bezanilla, M. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE 4, e5744 (2009).
Girbardt, M. Der Spitzenkörper von Polysticus versicolor. Planta 50, 47–59 (1957).
Verdin, J., Bartnicki-Garcia, S. & Riquelme, M. Functional stratification of the Spitzenkörper of Neurospora crassa. Mol. Microbiol. 74, 1044–1053 (2009).
Bracker, C. E., Murphy, D. J. & Lopez-Franco, R. in Functional Imaging of Optical Manipulation of Living Cells. Proceedings of SPIE., Vol. 2983 (eds Farkas, D. L. & Tromberg, B. J.) 67–80 (International Society of Optical Engineering, Bellingham, Washington, 1997).
Bartnicki-Garcia, S., Hergert, F. & Gierz, G. Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153, 46–57 (1989).
Riquelme, M., Reynaga-Pena, C. G., Gierz, G. & Bartnicki-Garcia, S. What determines growth direction in fungal hyphae? Fungal Genet. Biol. 24, 101–109 (1998).
Steinberg, G. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot. Cell 6, 351–360 (2007).
Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U. & Read, N. D. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet. Biol. 41, 897–910 (2004).
Takeshita, N., Higashitsuji, Y., Konzack, S. & Fischer, R. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell 19, 339–351 (2008).
Martin, S. G., McDonald, W. H., Yates, J. R. & Chang, F. Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev. Cell 8, 479–491 (2005).
Acknowledgements
This work was supported by funding from the UK Biotechnological and Biological Sciences Research Council (BBSRC) (grant BB/E010741/1) to N.D.R., a Ph.D. Studentship from The University of Edinburgh to A.L. and a BBSRC Studentship to A.B. The authors also thank the Mexican National Council for Science and Technology (CONACyT) for a postdoctoral fellowship to A.L.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Microtubules
-
Tubular cytoskeletal polymers composed of tubulin dimers. They provide tracks for intracellular transport based on motor proteins (kinesin or dynein) and form the spindle apparatus that allows chromosome segregation during nuclear division.
- Filasomes
-
Vesicles coated in filamentous actin.
- Phalloidin
-
A toxin that binds specifically to the interface between filamentous actin (F-actin) subunits. Phalloidin conjugated to fluorescent dyes has been widely used for imaging F-actin in eukaryotic cells such as Saccharomyces cerevisiae but has not proved useful for staining F-actin in many filamentous fungi.
- Clathrin
-
A structural protein that forms a cage-like, polyhedral molecular arrangement (a triskelion) composed of three heavy chains and three light chains. Clathrin shapes and coats vesicles during their formation.
- Wiscott–Aldrich syndrome protein
-
(WASP). Founding member of a family of activators of the actin-related protein 2/3 (Arp2/3) complex that participate in signal transduction to the actin cytoskeleton.
- Myosin
-
A superfamily of motor proteins that bind to microfilaments and couple ATP hydrolysis to force generation. Class I myosins are monomeric and are involved in endocytosis. Class II myosins are dimeric and can form filaments, which is important for their conserved role in cytokinesis. Class V myosins are dimeric processive motors that translocate cargoes along actin cables.
- Fimbrin
-
A conserved actin-crosslinking protein that contains a conserved 100 amino acid calponin homology domain found in many actin-binding proteins.
- FM4-64
-
A vital, membrane-selective, amphiphilic styryl dye commonly used to study endocytosis, vesicle trafficking, and organelle organization and movement in living fungal cells.
- Lucifer yellow
-
A vital fluorescent dye used as a marker for fluid-phase endocytosis.
- Formins
-
Large protein dimers that nucleate the formation of filamentous actin by the processive addition of globular actin to the barbed ends of actin microfilaments.
- Tropomyosin
-
An actin-binding protein that binds to and stabilises filamentous actin, promoting actin cable formation.
- Golgi equivalents
-
Single Golgi cisternae that are produced by most filamentous fungi instead of the stacks of cisternae found in animal and plant cells. These organelles process and package macromolecules that are destined for secretion.
- Conidial anastomosis tubes
-
Specialized cell protrusions or short hyphae that emerge from asexual fungal spores (conidia) and mediate cell fusion during colony initiation.
- Paxillin
-
An adaptor protein that participates in signal transduction and actin reorganization in mammalian cells.
- Epistatic
-
Pertaining to a gene: masking the phenotypic effect of another gene.
- Exocyst
-
A multiprotein complex involved in determining where vesicles dock and fuse with the plasma membrane.
- Anillin
-
A Drosophila melanogaster scaffold protein that interacts with and organizes structural components of the contractile actin ring. Other eukaryotes encode anillin-related proteins with similar functions.
- Actinin
-
An actin-binding protein that crosslinks filamentous actin and associates with the plasma membrane.
Rights and permissions
About this article
Cite this article
Berepiki, A., Lichius, A. & Read, N. Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 9, 876–887 (2011). https://doi.org/10.1038/nrmicro2666
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2666
This article is cited by
-
Deletion of the small GTPase rac1 in Trichoderma reesei provokes hyperbranching and impacts growth and cellulase production
Fungal Biology and Biotechnology (2019)
-
Multifunction of the ER P-Type Calcium Pump Spf1 During Hyphal Development in Candida albicans
Mycopathologia (2019)
-
The fungus that came in from the cold: dry rot’s pre-adapted ability to invade buildings
The ISME Journal (2018)
-
The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride
Scientific Reports (2018)
-
RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi
World Journal of Microbiology and Biotechnology (2017)