Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of growth and death in Escherichia coli by toxin–antitoxin systems

Key Points

  • The toxin–antitoxin (TA) systems of bacteria are new-comers in microbiology and biochemistry, as most of the discoveries about these systems have been made in the past decade. To date, it has been revealed that most bacteria and many archaea contain a number of highly diverse TA systems in their genomes.

  • In the type II TA systems, a toxin is constitutively co-expressed with its cognate antitoxin from a TA operon to form a stable complex in normally growing cells. As the antitoxin is less stable than the toxin in the cell, antitoxin has to be constantly produced to neutralize the cognate toxin. Under stress conditions, antitoxins are degraded by stress-induced proteases to release free toxins in the cells, resulting in cell growth arrest and eventual cell death.

  • Cellular targets of TA systems are highly diverse, from DNA replication to mRNA stability, protein synthesis, ATP production and cell wall biosynthesis. Other cellular targets are likely to be identified as more TA systems are discovered. The most frequent cellular targets for the Escherichia coli TA systems are mRNAs, perhaps because the inhibition of mRNA function seems to be the mildest means of regulating cell growth. Out of 36 TA systems in E. coli, 11 are known to interfere with mRNA.

  • As toxins targeting mRNA cleave cellular mRNAs, they are termed mRNA interferases. These mRNA interferases are grouped into two distinct classes depending on how they cleave mRNAs: ribosome-independent mRNA interferases and ribosome-dependent mRNA interferases (which cleave mRNAs at the ribosomal A site).

  • It has been shown that some toxins are induced under several stress conditions, including amino acid starvation, glucose starvation, DNA damage, heat and the addition of antibiotics; these toxins regulate cell growth, triggering programmed cell death. It is also predicted that the induction of some toxins is able to cause the persistent or quasi-dormant state, making these cells resistant to antibiotics. The toxins may also play a part in eliminating damaged cells from their populations.

  • Elucidation of the functions of these toxins is essential for our understanding of their roles in bacterial physiology under various stress conditions and also their roles in bacterial pathogenicity. The study of TA systems opens the door into a new and exciting field in medical research, molecular biology and biotechnology, as various toxins from TA systems may be used as new therapeutic tools. TA systems may also provide novel technologies for gene regulation and protein production.

Abstract

Escherichia coli K-12 contains at least 36 toxin genes, the expression of which causes growth inhibition and eventual death. These toxins are usually co-expressed with their cognate antitoxins in operons called toxin–antitoxin (TA) modules. Under normal growth conditions, toxins and antitoxins form stable complexes. However, stress-induced proteases preferentially eliminate unstable antitoxins, releasing free toxins to inhibit various cellular functions. TA systems have important roles in the physiology of cells in their natural habitats, including functions in biofilm formation and multidrug resistance. In this Review, we describe these TA systems in light of their functions and roles in the regulation of cell growth and death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for the regulation of toxin–antitoxin systems.
Figure 2: Genomic map of the toxin–antitoxin modules in Escherichia coli.
Figure 3: The crystal structures of toxin–antitoxin complexes.
Figure 4: The possible networks of toxin–antitoxin systems.
Figure 5: The multiple levels of autoregulation of the MazF–MazE toxin–antitoxin system.

Similar content being viewed by others

References

  1. Gerdes, K., Christensen, S. K. & Lobner-Olesen, A. Prokaryotic toxin–antitoxin stress response loci. Nature Rev. Microbiol. 3, 371–382 (2005).

    Article  CAS  Google Scholar 

  2. Hayes, F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi, Y. & Inouye, M. mRNA interferases, sequence-specific endoribonucleases from the toxin–antitoxin systems. Prog. Mol. Biol. Transl. Sci. 85, 467–500 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Sevin, E. W. & Barloy-Hubler, F. RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol. 8, R155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shao, Y. et al. TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res. 39, D606–D611 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Bernard, P. & Couturier, M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226, 735–745 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Gerdes, K. et al. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 5, 2023–2029 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ogura, T. & Hiraga, S. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl Acad. Sci. USA 80, 4784–4788 (1983).

    Article  CAS  Google Scholar 

  9. Bernard, P. & Couturier, M. The 41 carboxy-terminal residues of the miniF plasmid CcdA protein are sufficient to antagonize the killer activity of the CcdB protein. Mol. Gen. Genet. 226, 297–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Thisted, T., Nielsen, A. K. & Gerdes, K. Mechanism of post-segregational killing: translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3′-end processing. EMBO J. 13, 1950–1959 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thisted, T., Sorensen, N. S., Wagner, E. G. & Gerdes, K. Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′-end single-stranded leader and competes with the 3′-end of Hok mRNA for binding to the mok translational initiation region. EMBO J. 13, 1960–1968 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naito, T., Kusano, K. & Kobayashi, I. Selfish behavior of restriction-modification systems. Science 267, 897–899 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Yarmolinsky, M. B. Programmed cell death in bacterial populations. Science 267, 836–837 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Van Melderen, L. & Saavedra De Bast, M. Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet. 5, e1000437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christensen-Dalsgaard, M., Jorgensen, M. G. & Gerdes, K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol. Microbiol. 75, 333–348 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Marianovsky, I., Aizenman, E., Engelberg-Kulka, H. & Glaser, G. The regulation of the Escherichia coli mazEF promoter involves an unusual alternating palindrome. J. Biol. Chem. 276, 5975–5984 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi, Y., Park, J. H. & Inouye, M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerdes, K. & Wagner, E. G. RNA antitoxins. Curr. Opin. Microbiol. 10, 117–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y., Zhang, J., Hara, H., Kato, I. & Inouye, M. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J. Biol. Chem. 280, 3143–3150 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Pedersen, K. et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Takagi, H. et al. Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects. Nature Struct. Mol. Biol. 12, 327–331 (2005).

    Article  CAS  Google Scholar 

  24. Zhang, Y., Zhu, L., Zhang, J. & Inouye, M. Characterization of ChpBK, an mRNA interferase from Escherichia coli. J. Biol. Chem. 280, 26080–26088 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Motiejunaite, R., Armalyte, J., Markuckas, A. & Suziedeliene, E. Escherichia coli dinJ-yafQ genes act as a toxin–antitoxin module. FEMS Microbiol. Lett. 268, 112–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Prysak, M. H. et al. Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Mol. Microbiol. 71, 1071–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kamada, K. & Hanaoka, F. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol. Cell 19, 497–509 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y. & Inouye, M. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J. Biol. Chem. 284, 6627–6638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korch, S. B., Henderson, T. A. & Hill, T. M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, J. M. & Shaw, K. J. A novel family of Escherichia coli toxin-antitoxin gene pairs. J. Bacteriol. 185, 6600–6608 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y., Yamaguchi, Y. & Inouye, M. Characterization of YafO, an Escherichia coli toxin. J. Biol. Chem. 284, 25522–25531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown, B. L. et al. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5, e1000706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pandey, D. P. & Gerdes, K. Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaffe, A., Ogura, T. & Hiraga, S. Effects of the ccd function of the F plasmid on bacterial growth. J. Bacteriol. 163, 841–849 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miki, T., Park, J. A., Nagao, K., Murayama, N. & Horiuchi, T. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225, 39–52 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Roberts, R. C., Strom, A. R. & Helinski, D. R. The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J. Mol. Biol. 237, 35–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Contreras, R., Zhang, X. S., Kim, Y. & Wood, T. K. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS ONE 3, e2394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neubauer, C. et al. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y. & Inouye, M. RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation. 79, 1418–1429 (2011).

  41. Tan, Q., Awano, N. & Inouye, M. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol. Microbiol. 79, 109–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Mutschler, H., Gebhardt, M., Shoeman, R. L. & Meinhart, A. A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9, e1001033 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inouye, M. The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology. J. Cell Physiol. 209, 670–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Jorgensen, M. G., Pandey, D. P., Jaskolska, M. & Gerdes, K. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J. Bacteriol. 191, 1191–1199 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt, O. et al. prlF and yhaV encode a new toxin–antitoxin system in Escherichia coli. J. Mol. Biol. 372, 894–905 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koga, M., Otsuka, Y., Lemire, S. & Yonesaki, T. Escherichia coli rnlA and rnlB compose a novel toxin–antitoxin system. Genetics 187, 123–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamada, K., Hanaoka, F. & Burley, S. K. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11, 875–884 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Li, G. Y. et al. Characterization of dual substrate binding sites in the homodimeric structure of Escherichia coli mRNA interferase MazF. J. Mol. Biol. 357, 139–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Metzger, S. et al. The nucleotide sequence and characterization of the relA gene of Escherichia coli. J. Biol. Chem. 263, 15699–15704 (1988).

    CAS  PubMed  Google Scholar 

  50. Aizenman, E., Engelberg-Kulka, H. & Glaser, G. An Escherichia coli chromosomal “addiction module” regulated by guanosine 3',5′-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl Acad. Sci. USA 93, 6059–6063 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Christensen, S. K., Pedersen, K., Hansen, F. G. & Gerdes, K. Toxin–antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J. Mol. Biol. 332, 809–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, J., Zhang, Y. & Inouye, M. Characterization of the interactions within the mazEF addiction module of Escherichia coli. J. Biol. Chem. 278, 32300–32306 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, L. et al. The mRNA interferases, MazF-mt3 and MazF-mt7 from Mycobacterium tuberculosis target unique pentad sequences in single-stranded RNA. Mol. Microbiol. 69, 559–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu, L. et al. Characterization of mRNA interferases from Mycobacterium tuberculosis. J. Biol. Chem. 281, 18638–18643 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Fu, Z., Donegan, N. P., Memmi, G. & Cheung, A. L. Characterization of MazFSa, an endoribonuclease from Staphylococcus aureus. J. Bacteriol. 189, 8871–8879 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu, L. et al. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J. Bacteriol. 191, 3248–3255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pellegrini, O., Mathy, N., Gogos, A., Shapiro, L. & Condon, C. The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor. Mol. Microbiol. 56, 1139–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Park, J. H., Yamaguchi, Y. & Inouye, M. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett. 585, 2526–2532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nariya, H. & Inouye, M. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Ren, D., Bedzyk, L. A., Thomas, S. M., Ye, R. W. & Wood, T. K. Gene expression in Escherichia coli biofilms. Appl. Microbiol Biotechnol. 64, 515–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Gonzalez Barrios, A. F. et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188, 305–316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Surette, M. G., Miller, M. B. & Bassler, B. L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA 96, 1639–1644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sperandio, V., Torres, A. G. & Kaper, J. B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43, 809–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Chilcott, G. S. & Hughes, K. T. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694–708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayes, C. S. & Sauer, R. T. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell 12, 903–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Makarova, K. S., Grishin, N. V. & Koonin, E. V. The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 22, 2581–2584 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Button, J. E., Silhavy, T. J. & Ruiz, N. A suppressor of cell death caused by the loss of σE downregulates extracytoplasmic stress responses and outer membrane vesicle production in Escherichia coli. J. Bacteriol. 189, 1523–1530 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Hurley, J. M., Cruz, J. W., Ouyang, M. & Woychik, N. A. Bacterial toxin RelE mediates frequent codon-independent mRNA cleavage from the 5′ end of coding regions in vivo. J. Biol. Chem. 286, 14770–14778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Christensen, S. K. & Gerdes, K. RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389–1400 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Li, G. Y., Zhang, Y., Inouye, M. & Ikura, M. Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module. J. Mol. Biol. 380, 107–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Christensen, S. K. et al. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol. Microbiol. 51, 1705–1717 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Christensen-Dalsgaard, M., Overgaard, M., Winther, K. S. & Gerdes, K. RNA decay by messenger RNA interferases. Methods Enzymol. 447, 521–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Winther, K. S. & Gerdes, K. Ectopic production of VapCs from Enterobacteria inhibits translation and trans-activates YoeB mRNA interferase. Mol. Microbiol. 72, 918–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. McKenzie, G. J., Magner, D. B., Lee, P. L. & Rosenberg, S. M. The dinB operon and spontaneous mutation in Escherichia coli. J. Bacteriol. 185, 3972–3977 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brotcorne-Lannoye, A. & Maenhaut-Michel, G. Role of RecA protein in untargeted UV mutagenesis of bacteriophage λ: evidence for the requirement for the dinB gene. Proc. Natl Acad. Sci. USA 83, 3904–3908 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kolodkin-Gal, I., Verdiger, R., Shlosberg-Fedida, A. & Engelberg-Kulka, H. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS ONE 4, e6785 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lewis, L. K., Harlow, G. R., Gregg-Jolly, L. A. & Mount, D. W. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol. Biol. 241, 507–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez De Henestrosa, A. R. et al. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35, 1560–1572 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Sat, B. et al. Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. J. Bacteriol. 183, 2041–2045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hazan, R., Sat, B. & Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J. Bacteriol. 186, 3663–3669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Belitsky, M. et al. The Escherichia coli extracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol. Cell 41, 625–635 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Kolodkin-Gal, I. & Engelberg-Kulka, H. The extracellular death factor: physiological and genetic factors influencing its production and response in Escherichia coli. J. Bacteriol. 190, 3169–3175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S. & Engelberg-Kulka, H. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318, 652–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kolodkin-Gal, I., Sat, B., Keshet, A. & Engelberg-Kulka, H. The communication factor EDF and the toxin–antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biol. 6, e319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Amitai, S., Kolodkin-Gal, I., Hananya-Meltabashi, M., Sacher, A. & Engelberg-Kulka, H. Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet. 5, e1000390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hong, J., Ahn, J. M., Kim, B. C. & Gu, M. B. Construction of a functional network for common DNA damage responses in Escherichia coli. Genomics 93, 514–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki, M., Zhang, J., Liu, M., Woychik, N. A. & Inouye, M. Single protein production in living cells facilitated by an mRNA interferase. Mol. Cell 18, 253–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Shinagawa, H. SOS response as an adaptive response to DNA damage in prokaryotes. EXS 77, 221–235 (1996).

    CAS  PubMed  Google Scholar 

  91. Butala, M., Zgur-Bertok, D. & Busby, S. J. The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Kawano, M., Aravind, L. & Storz, G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol. Microbiol. 64, 738–754 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pedersen, K. & Gerdes, K. Multiple hok genes on the chromosome of Escherichia coli. Mol. Microbiol. 32, 1090–1102 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Vogel, J., Argaman, L., Wagner, E. G. & Altuvia, S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14, 2271–2276 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Cairns, J. & Foster, P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128, 695–701 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Harris, R. S., Longerich, S. & Rosenberg, S. M. Recombination in adaptive mutation. Science 264, 258–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Harris, R. S., Ross, K. J. & Rosenberg, S. M. Opposing roles of the holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics 142, 681–691 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Foster, P. L., Trimarchi, J. M. & Maurer, R. A. Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli. Genetics 142, 25–37 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Singletary, L. A. et al. An SOS-regulated type 2 toxin-antitoxin system. J. Bacteriol. 191, 7456–7465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Opperman, T., Murli, S., Smith, B. T. & Walker, G. C. A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc. Natl Acad. Sci. USA 96, 9218–9223 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, Y., Wang, X., Ma, Q., Zhang, X. S. & Wood, T. K. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. 191, 1258–1267 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Harrison, J. J. et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob. Agents Chemother. 53, 2253–2258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Mulvey, M. R. & Loewen, P. C. Nucleotide sequence of katF of Escherichia coli suggests KatF protein is a novel σ transcription factor. Nucleic Acids Res. 17, 9979–9991 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tanaka, K., Takayanagi, Y., Fujita, N., Ishihama, A. & Takahashi, H. Heterogeneity of the principal σ factor in Escherichia coli: the rpoS gene product, σ38, is a second principal σ factor of RNA polymerase in stationary-phase Escherichia coli. Proc. Natl Acad. Sci. USA 90, 3511–3515 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ahmad, S. I., Kirk, S. H. & Eisenstark, A. Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu. Rev. Microbiol. 52, 591–625 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Sat, B., Reches, M. & Engelberg-Kulka, H. The Escherichia coli mazEF suicide module mediates thymineless death. J. Bacteriol. 185, 1803–1807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S. & Hazan, R. Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol. 12, 66–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Fonville, N. C., Bates, D., Hastings, P. J., Hanawalt, P. C. & Rosenberg, S. M. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 6, e1000865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Foti, J. J., Schienda, J., Sutera, V. A. Jr & Lovett, S. T. A bacterial G protein-mediated response to replication arrest. Mol. Cell 17, 549–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Godoy, V. G., Jarosz, D. F., Walker, F. L., Simmons, L. A. & Walker, G. C. Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO J. 25, 868–879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Imlay, J. A., Chin, S. M. & Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640–642 (1988).

    Article  CAS  PubMed  Google Scholar 

  113. Imlay, J. A. & Linn, S. Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J. Bacteriol. 166, 519–527 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Davies, B. W. et al. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell 36, 845–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dukan, S. et al. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad. Sci. USA 97, 5746–5749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Schumacher, M. A. et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323, 396–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, Y. & Wood, T. K. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Shah, D. et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Christensen, S. K., Mikkelsen, M., Pedersen, K. & Gerdes, K. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc. Natl Acad. Sci. USA 98, 14328–14333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sunohara, T., Jojima, K., Tagami, H., Inada, T. & Aiba, H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J. Biol. Chem. 279, 15368–15375 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Sunohara, T., Jojima, K., Yamamoto, Y., Inada, T. & Aiba, H. Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA 10, 378–386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, X., Yagi, M., Morita, T. & Aiba, H. Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Mol. Microbiol. 68, 462–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Zhu, L., Sharp, J. D., Kobayashi, H., Woychik, N. A. & Inouye, M. Noncognate Mycobacterium tuberculosis toxin-antitoxins can physically and functionally interact. J. Biol. Chem. 285, 39732–39738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, Y. et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ. Microbiol. 12, 1105–1121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mao, L. et al. Production of membrane proteins for NMR studies using the condensed single protein (cSPP) production system. J. Struct. Funct. Genomics 10, 281–289 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shimazu, T. et al. NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes Dev. 21, 929–941 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chono, H. et al. Acquisition of HIV-1 Resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase. Hum. Gene Ther. 22, 35–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Goldman, E. & Jakubowski, H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol. Microbiol. 4, 2035–2040 (1990).

    Article  CAS  PubMed  Google Scholar 

  130. Kuroda, A. et al. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293, 705–708 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Phadtare and C. J. Mozdzierz for their critical reading of this article. This work was partially supported by a US National Institutes of Health grant (1RO1GM081567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayori Inouye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1UB4

1WMI

Glossary

Antisense RNA

A complementary RNA sequence that binds to mRNA.

Autoinducer

A signalling molecule that causes the regulation of specific genes.

Outer-membrane vesicles

Enclosed compartments that are separated from the outer membrane in Gram-negative bacteria.

Fruiting body

A specialized spore-producing structure.

Stress-induced mutagenesis

The stress-induced reversible activation of error-prone DNA polymerases and downregulation of error-correcting enzymes, the result of which is an increased mutation rate in bacteria.

Stringent response

The physiological changes that are caused by amino acid starvation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, Y., Inouye, M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 9, 779–790 (2011). https://doi.org/10.1038/nrmicro2651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing