Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Leishmaniasis: complexity at the host–pathogen interface

Key Points

  • Many Leishmania spp. can cause human disease, with clinical symptoms dependent upon both host- and parasite-related factors.

  • During infection, leishmanial parasites may be phagocytosed by a variety of cells, including neutrophils, monocytes, monocyte-derived dendritic cells (moDCs), macrophages and stromal cells. However, host cell preference and the importance of each cell type to parasite clearance versus parasite persistence may vary following infection by different Leishmania spp.

  • Intracellular Leishmania parasites have multiple ways to manipulate macrophage function, including subverting the control of phagosome biogenesis and maturation. The importance of parasite virulence factors (for example, lipophosphoglycan) in this process is dependent upon leishmanial species and host cell type.

  • Major surface protease (MSP; also known as GP63) of Leishmania spp. has an important role in regulating intracellular survival in some host cells, by cleaving a variety of phosphotyrosine phosphatases such as SRC homology 2 domain phosphotyrosine receptor phosphate (SHP1). MSP may access these cytosolic targets after crossing lipid microdomains in the host cell membrane.

  • Iron has a key role in intracellular survival of leishmanial pathogens, with both host (SLC11A1) and parasite (LIT1) transporters competing to secure this essential resource.

  • Cell-mediated immunity to leishmanial infection is multifactorial, with different models of disease serving to exemplify different aspects, for example, the importance of CD8+ T cells and/or the involvement of moDCs.

  • Parasite persistence and the capacity to induce good vaccine-induced immunity are both strongly influenced by the presence of interleukin-10 (IL-10). There are multiple cellular sources of IL-10 (T helper 1 (TH1) cells, regulatory T (TReg) cells, B cells, macrophages and DCs), but whether each has similar functional significance has yet to be determined.

Abstract

Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host–pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The life cycle of Leishmania parasites.
Figure 2: Multiple cell types are involved in the uptake of Leishmania parasites.
Figure 3: Phagosome fate is determined by factors from both the host and Leishmania spp.
Figure 4: Iron wars within macrophages infected with Leishmania parasites.
Figure 5: Lipid microdomains during Leishmania infection of macrophages.
Figure 6: Cellular components of the anti-leishmanial immune response.

References

  1. Kedzierski, L. Leishmaniasis vaccine: where are we today? J. Glob. Infect. Dis. 2, 177–185 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peacock, C. S. et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genet. 39, 839–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kaye, P. M. & Blackwell, J. M. Postgenomic research on leishmaniasis: a critical self-appraisal. Trends Parasitol. 24, 401–405 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Akopyants, N. S. et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324, 265–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dobson, D. E. et al. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 6, e1001185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sadlova, J. et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell. Microbiol. 12, 1765–1779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rogers, M. E., Ilg, T., Nikolaev, A. V., Ferguson, M. A. & Bates, P. A. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430, 463–467 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beattie, L. et al. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog. 6, e1000805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Trez, C. et al. iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice. PLoS Pathog. 5, e1000494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  11. Laskay, T., van Zandbergen, G. & Solbach, W. Neutrophil granulocytes — Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol. 11, 210–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Peters, N. C. et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321, 970–974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thalhofer, C. J., Chen, Y., Sudan, B., Love-Homan, L. & Wilson, M. E. Leukocytes infiltrating the skin and draining lymph nodes in response to the protozoan Leishmania infantum chagasi. Infect. Immun. 79, 108–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Haraldsen, G., Balogh, J., Pollheimer, J., Sponheim, J. & Kuchler, A. M. Interleukin-33 — cytokine of dual function or novel alarmin? Trends Immunol. 30, 227–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Oghumu, S., Lezama-Davila, C. M., Isaac-Marquez, A. P. & Satoskar, A. R. Role of chemokines in regulation of immunity against leishmaniasis. Exp. Parasitol. 126, 389–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez Kostka, S. et al. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J. Immunol. 182, 3039–3046 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Xin, L. et al. Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J. Immunol. 184, 7047–7056 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Depaquit, J., Grandadam, M., Fouque, F., Andry, P. E. & Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro. Surveill. 15, 19507 (2010).

    CAS  PubMed  Google Scholar 

  20. Hillesland, H. et al. Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am. J. Trop. Med. Hyg. 79, 881–886 (2008).

    Article  PubMed  Google Scholar 

  21. Novais, F. O. et al. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J. Immunol. 183, 8088–8098 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ribeiro-Gomes, F. L. et al. Macrophage interactions with neutrophils regulate Leishmania major infection. J. Immunol. 172, 4454–4462 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel, C., McMaster, W. R., Girard, D. & Descoteaux, A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J. Immunol. 185, 4319–4327 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Guimaraes-Costa, A. B. et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl Acad. Sci. USA 106, 6748–6753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ng, L. G. et al. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog. 4, e1000222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rittig, M. G. et al. Coiling phagocytosis of trypanosomatids and fungal cells. Infect. Immun. 66, 4331–4339 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Charmoy, M. et al. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog. 6, e1000755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Horst, A. K. et al. CEACAM1+ myeloid cells control angiogenesis in inflammation. Blood 113, 6726–6736 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, N. et al. CC chemokine receptor (CCR)2 is required for Langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells: absence of CCR2 shifts the Leishmania major–resistant phenotype to a susceptible state dominated by Th2 cytokines, B cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 192, 205–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carvalho, L. P., Pearce, E. J. & Scott, P. Functional dichotomy of dendritic cells following interaction with Leishmania braziliensis: infected cells produce high levels of TNFα, whereas bystander dendritic cells are activated to promote T cell responses. J. Immunol. 181, 6473–6480 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Maroof, A., Beattie, L., Kirby, A., Coles, M. & Kaye, P. M. Dendritic cells matured by inflammation induce CD86-dependent priming of naive CD8+ T cells in the absence of their cognate peptide antigen. J. Immunol. 183, 7095–7103 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Engwerda, C. R., Ato, M. & Kaye, P. M. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol. 20, 524–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bogdan, C. et al. Fibroblasts as host cells in latent leishmaniosis. J. Exp. Med. 191, 2121–2130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Svensson, M., Maroof, A., Ato, M. & Kaye, P. M. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gorgani, N. N., Ma, Y. & Clark, H. F. Gene signatures reflect the marked heterogeneity of tissue-resident macrophages. Immunol. Cell Biol. 86, 246–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Gueirard, P., Laplante, A., Rondeau, C., Milon, G. & Desjardins, M. Trafficking of Leishmania donovani promastigotes in non-lytic compartments in neutrophils enables the subsequent transfer of parasites to macrophages. Cell. Microbiol. 10, 100–111 (2008).

    CAS  PubMed  Google Scholar 

  38. Desjardins, M. & Descoteaux, A. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J. Exp. Med. 185, 2061–2068 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mollinedo, F., Janssen, H., de la Iglesia-Vicente, J., Villa-Pulgarin, J. A. & Calafat, J. Selective fusion of azurophilic granules with Leishmania-containing phagosomes in human neutrophils. J. Biol. Chem. 285, 34528–34536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ndjamen, B., Kang, B. H., Hatsuzawa, K. & Kima, P. E. Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; parasitophorous vacuoles are hybrid compartments. Cell. Microbiol. 12, 1480–1494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lippuner, C. et al. Real-time imaging of Leishmania mexicana-infected early phagosomes: a study using primary macrophages generated from green fluorescent protein-Rab5 transgenic mice. FASEB J. 23, 483–491 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Vinet, A. F., Fukuda, M., Turco, S. J. & Descoteaux, A. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. PLoS Pathog. 5, e1000628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spath, G. F., Schlesinger, P., Schreiber, R. & Beverley, S. M. A novel role for Stat1 in phagosome acidification and natural host resistance to intracellular infection by Leishmania major. PLoS Pathog. 5, e1000381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alcolea, P. J. et al. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics 11, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson, J. et al. Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis. PLoS Pathog. 4, e1000179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huynh, C. & Andrews, N. W. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell. Microbiol. 10, 293–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Carvalho, S. et al. Heme as a source of iron to Leishmania infantum amastigotes. Acta Trop. 109, 131–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Blackwell, J. M. et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 3, 773–784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacques, I., Andrews, N. W. & Huynh, C. Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter. Mol. Biochem. Parasitol. 170, 28–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Das, N. K., Biswas, S., Solanki, S. & Mukhopadhyay, C. K. Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth. Cell. Microbiol. 11, 83–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Gregory, D. J. & Olivier, M. Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology 130 Suppl S1, S27–S35 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Joshi, P. B., Kelly, B. L., Kamhawi, S., Sacks, D. L. & McMaster, W. R. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol. Biochem. Parasitol. 120, 33–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Victoir, K. et al. Complexity of the major surface protease (msp) gene organization in Leishmania (Viannia) braziliensis: evolutionary and functional implications. Parasitology 131, 207–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Hsiao, C. H., Yao, C., Storlie, P., Donelson, J. E. & Wilson, M. E. The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi. Mol. Biochem. Parasitol. 157, 148–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Gomez, M. A. et al. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci. Signal. 2, ra58 (2009).

    Article  PubMed  Google Scholar 

  56. Halle, M. et al. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J. Biol. Chem. 284, 6893–6908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yao, C., Donelson, J. E. & Wilson, M. E. Internal and surface-localized major surface proteases of Leishmania spp. and their differential release from promastigotes. Eukaryot. Cell 6, 1905–1912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Winnen, B. et al. Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system. PLoS ONE 3, e2178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barclay, A. N. & Brown, M. H. The SIRP family of receptors and immune regulation. Nature Rev. Immunol. 6, 457–464 (2006).

    Article  CAS  Google Scholar 

  60. Takizawa, H. & Manz, M. G. Macrophage tolerance: CD47–SIRP-α–mediated signals matter. Nature Immunol. 8, 1287–1289 (2007).

    Article  CAS  Google Scholar 

  61. Beattie, L. et al. Leishmania donovani-induced expression of signal regulatory protein alpha on Kupffer cells enhances hepatic invariant NKT-cell activation. Eur. J. Immunol. 40, 117–123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pathak, M. K. & Yi, T. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J. Immunol. 167, 3391–3397 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Forget, G. et al. Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis. Eur. J. Immunol. 31, 3185–3196 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Spath, G. F., McDowell, M. A. & Beverley, S. M. Leishmania major intracellular survival is not altered in SHP-1 deficient mev or CD45-/- mice. Exp. Parasitol. 120, 275–279 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olivier, M., Baimbridge, K. G. & Reiner, N. E. Stimulus-response coupling in monocytes infected with Leishmania. Attenuation of calcium transients is related to defective agonist-induced accumulation of inositol phosphates. J. Immunol. 148, 1188–1196 (1992).

    CAS  PubMed  Google Scholar 

  66. Alvarez-Rueda, N., Biron, M. & Le Pape, P. Infectivity of Leishmania mexicana is associated with differential expression of protein kinase C-like triggered during a cell–cell contact. PLoS ONE 4, e7581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ben-Othman, R., Dellagi, K. & Guizani-Tabbane, L. Leishmania major parasites induced macrophage tolerance: implication of MAPK and NF-κB pathways. Mol. Immunol. 46, 3438–3444 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Ben-Othman, R., Guizani-Tabbane, L. & Dellagi, K. Leishmania initially activates but subsequently down-regulates intracellular mitogen-activated protein kinases and nuclear factor-κB signaling in macrophages. Mol. Immunol. 45, 3222–3229 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Calegari-Silva, T. C. et al. NF-κB-mediated repression of iNOS expression in Leishmania amazonensis macrophage infection. Immunol. Lett. 127, 19–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez, N. E., Gaur, U. & Wilson, M. E. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell. Microbiol. 8, 1106–1120 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Osorio y Fortea, J. et al. Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes. BMC Genomics 10, 119 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Phillips, R. et al. Innate killing of Leishmania donovani by macrophages of the splenic marginal zone requires IRF-7. PLoS Pathog. 6, e1000813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chakraborty, D. et al. Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts. J. Immunol. 175, 3214–3224 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Rub, A. et al. Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nature Immunol. 10, 273–280 (2009).

    Article  CAS  Google Scholar 

  75. Srivastava, N., Sudan, R. & Saha, B. CD40-modulated dual-specificity phosphatases MAPK phosphatase (MKP)-1 and MKP-3 reciprocally regulate Leishmania major infection. J. Immunol. 186, 5863–5872 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Winberg, M. E. et al. Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts. Microbes Infect. 11, 215–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Garg, R., Lodge, R., Descoteaux, A. & Tremblay, M. J. Leishmania infantum promastigotes reduce entry of HIV-1 into macrophages through a lipophosphoglycan-mediated disruption of lipid rafts. J. Infect. Dis. 197, 1701–1708 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Silverman, J. M. & Reiner, N. E. Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell. Microbiol. 13, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Silverman, J. M. et al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J. Cell Sci. 123, 842–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Silverman, J. M. et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J. Immunol. 185, 5011–5022 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Pereira, R. M. et al. Novel role for the double-stranded RNA-activated protein kinase PKR: modulation of macrophage infection by the protozoan parasite Leishmania. FASEB J. 24, 617–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Guilbride, L., Myler, P. J. & Stuart, K. Distribution and sequence divergence of LRV1 viruses among different Leishmania species. Mol. Biochem. Parasitol. 54, 101–104 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Ives, A. et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331, 775–778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stern, J. J., Oca, M. J., Rubin, B. Y., Anderson, S. L. & Murray, H. W. Role of L3T4+ and LyT-2+ cells in experimental visceral leishmaniasis. J. Immunol. 140, 3971–3977 (1988).

    CAS  PubMed  Google Scholar 

  85. Muller, I., Kropf, P., Etges, R. J. & Louis, J. A. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infect. Immun. 61, 3730–3738 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Belkaid, Y. et al. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168, 3992–4000 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Uzonna, J. E., Joyce, K. L. & Scott, P. Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon-γ-producing CD8+ T cells. J. Exp. Med. 199, 1559–1566 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Faria, D. R. et al. Recruitment of CD8+ T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis. Parasite Immunol. 31, 432–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Joshi, T., Rodriguez, S., Perovic, V., Cockburn, I. A. & Stager, S. B7-H1 blockade increases survival of dysfunctional CD8+ T cells and confers protection against Leishmania donovani infections. PLoS Pathog. 5, e1000431 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brewig, N. et al. Priming of CD8+ and CD4+ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. J. Immunol. 182, 774–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Polley, R., Sanos, S. L., Prickett, S., Haque, A. & Kaye, P. M. Chronic Leishmania donovani infection promotes bystander CD8+-T-cell expansion and heterologous immunity. Infect. Immun. 73, 7996–8001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 194, 1497–1506 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Anderson, C. F., Oukka, M., Kuchroo, V. J. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10–mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nylen, S. et al. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J. Exp. Med. 204, 805–817 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stager, S. et al. Distinct roles for IL-6 and IL-12p40 in mediating protection against Leishmania donovani and the expansion of IL-10+ CD4+ T cells. Eur. J. Immunol. 36, 1764–1771 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ronet, C. et al. Regulatory B cells shape the development of Th2 immune responses in BALB/c mice infected with Leishmania major through IL-10 production. J. Immunol. 184, 886–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Maroof, A. et al. Posttranscriptional regulation of IL-10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 29, 295–305 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miles, S. A., Conrad, S. M., Alves, R. G., Jeronimo, S. M. & Mosser, D. M. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J. Exp. Med. 201, 747–754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Charmoy, M. et al. Leishmania major induces distinct neutrophil phenotypes in mice that are resistant or susceptible to infection. J. Leukoc. Biol. 82, 288–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Groux, H. et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J. Immunol. 162, 1723–1729 (1999).

    CAS  PubMed  Google Scholar 

  102. Ranatunga, D. et al. A human IL10 BAC transgene reveals tissue-specific control of IL-10 expression and alters disease outcome. Proc. Natl Acad. Sci. USA 106, 17123–17128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin, S., Pahari, S., Sudan, R. & Saha, B. CD40 signaling in CD8+CD40+ T cells turns on contra-T regulatory cell functions. J. Immunol. 184, 5510–5518 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Dalton, J. E. et al. Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J. Clin. Invest. 120, 1204–1216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ato, M., Stager, S., Engwerda, C. R. & Kaye, P. M. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nature Immunol. 3, 1185–1191 (2002).

    Article  CAS  Google Scholar 

  106. Machado, P. R. et al. Oral pentoxifylline combined with pentavalent antimony: a randomized trial for mucosal leishmaniasis. Clin. Infect. Dis. 44, 788–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Filipe-Santos, O. et al. A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Reckling, S. et al. Proapoptotic Bcl-2 family member Bim promotes persistent infection and limits protective immunity . Infect. Immun. 76, 1179–1185 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Zaph, C., Uzonna, J., Beverley, S. M. & Scott, P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nature Med. 10, 1104–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Colpitts, S. L., Dalton, N. M. & Scott, P. IL-7 receptor expression provides the potential for long-term survival of both CD62Lhigh central memory T cells and Th1 effector cells during Leishmania major infection. J. Immunol. 182, 5702–5711 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Darrah, P. A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nature Med. 13, 843–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Darrah, P. A. et al. IL-10 production differentially influences the magnitude, quality, and protective capacity of Th1 responses depending on the vaccine platform. J. Exp. Med. 207, 1421–1433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Working Group on Research Priorities for Development of Leishmaniasis Vaccines et al. Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl. Trop. Dis. 5, e943 (2011).

  114. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

    CAS  Google Scholar 

  115. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sacks, D. L. Leishmania-sand fly interactions controlling species-specific vector competence. Cell. Microbiol. 3, 189–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Beverley, S. M. & Turco, S. J. Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol. 6, 35–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Korner, U., Fuss, V., Steigerwald, J. & Moll, H. Biogenesis of Leishmania major-harboring vacuoles in murine dendritic cells. Infect. Immun. 74, 1305–1312 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. World Health Organization. Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases (WHO, Geneva, 2010).

Download references

Acknowledgements

Work in the P.K. laboratory is funded by grants from the UK Medical Research Council and the Wellcome Trust. Work in the P.S. laboratory is funded by grants from the National Institute of Allergy and Infectious Diseases, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kaye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul Kaye's homepage

Philip Scott's homepage

Glossary

Two-photon intravital imaging

A fluorescent-laser-based microscopy technique that allows real-time imaging of cells that are deep within the tissues of live animals.

Chemokines

A family of small (810 kDa) chemotactic cytokines that regulate cell migration and function. Different chemokine families are defined by the presence of specific motifs known as C, CC, CXC and CX3C.

Granules

Cytosolic particles within neutrophils that are referred to as primary, tertiary or specific, based on their staining characteristics and their content. Primary granules (also called azurophilic granules) contain the enzyme myeloperoxidase, which is responsible for the green colour of pus.

RAB GTPases

A large family of monomeric guanine nucleotide binding proteins that act as important regulators of vesicle transport and docking in eukaryotic cells.

Fc receptors

Cell surface receptors that recognize the Fc tails of antibody molecules. The binding of particles that are coated with antibody by the Fc receptors on phagocytic cells triggers internalisation and potent antimicrobial effector responses.

Lipid microdomains

Regions of a biological membrane that are enriched in a particular protein or lipid and can vary in size, composition and function. For example, lipid rafts are highly dynamic microdomains, 10–200 nm in size, that are enriched in cholesterol and sphingolipids and serve to compartmentalize different membrane functions.

Signalosome

A high-molecular-mass cytosolic or membrane-bound complex that contains many of the individual proteins that are associated with a signalling pathway, often together with various scaffold proteins.

Concomitant immunity

A situation in which immunological resistance to reinfection co-exists at the same time as persistence of the original infection.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaye, P., Scott, P. Leishmaniasis: complexity at the host–pathogen interface. Nat Rev Microbiol 9, 604–615 (2011). https://doi.org/10.1038/nrmicro2608

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing