Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging patterns of marine nitrogen fixation

Key Points

  • N2 fixation in the ocean is an important process that contributes to the biological sequestration of CO2 in the deep ocean.

  • There are different types of marine diazotrophs (including heterotrophic bacteria), but those that are known to contribute to marine N2 fixation are: members of the genus Trichodesmium, which are non-heterocystous, filamentous cyanobacteria; the unicellular cyanobacteria UCYN-A and Crocosphaera watsonii; free-living heterocystous species such as Nodularia spp. and Anabaena spp.; and the heterocystous diatom symbiont Richelia intracellularis. Although all of these are cyanobacteria, it is predicted that N2 fixation in UCYN-A is dependent on organic C (that is, UCYN-A is a secondary producer), whereas the others are primary producers.

  • The temperature defines the boundaries of where each type of organism can be found, and the deposition of dust (and in the case of the Baltic Sea the runoff from land), the nutrient supply and the internal cycling of nutrients control which nutrients (Fe or P) will be limiting to diazotrophs. Diazotrophs have developed a number of physiological adaptations to deal with both types of nutrient limitation.

  • Fe and P also seem to control the distribution of diazotrophic species in the major ocean basins, with the high Fe areas of the North Atlantic Ocean and Arabian Sea hosting high abundances of Trichodesmium spp., whereas the North and South Pacific Ocean and South Atlantic Ocean seem to be dominated by unicellular cyanobacterial diazotrophs. The distribution of diazotrophic species is important, and different morphological and physiological types have the potential to affect the mode of transfer of newly fixed N into the food web and the sequestration of atmospheric CO2 in the deep sea.

  • Research is now focusing on how increased atmospheric CO2 affects N2 fixation, and on the search for N2 fixation in waters where it has not been previously considered: that is, lower-temperature waters and waters with measureable amounts of fixed inorganic N. High CO2 can increase N2 fixation in Trichodesmium spp. and C. watsonii.

Abstract

Biological N2 fixation is an important part of the marine nitrogen cycle as it provides a source of new nitrogen that can support biological carbon export and sequestration. Research in the past decade has focused on determining the patterns of distribution and abundance of diazotrophs, defining the environmental features leading to these patterns and characterizing the factors that constrain marine N2 fixation overall. In this Review, we describe how variations in the deposition of iron from dust to different ocean basins affects the limiting nutrient for N2 fixation and the distribution of different diazotrophic species. However, many questions remain about marine N2 fixation, including the role of temperature, fixed nitrogen species, CO2 and physical forcing in controlling N2 fixation, as well as the potential for heterotrophic N2 fixation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the importance of nitrogen fixation in the ocean.
Figure 2: Summary of the distribution of nitrogen fixation rates, diazotrophic species and nutrient limitation in the ocean.

Similar content being viewed by others

References

  1. Dugdale, R. C. & Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–206 (1967).

    Article  CAS  Google Scholar 

  2. Eppley, R. W. & Peterson, B. J. Particulate organic-matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  Google Scholar 

  3. Longhurst, A. R. & Harrison, W. G. The biological pump – profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22, 47–123 (1989).

    Article  Google Scholar 

  4. Capone, D. G. et al. Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem. Cycles 19, GB2024 (2005). An extensive review of the physiology, ecology and biogeochemistry of Trichodesmium spp. in the North Atlantic Ocean.

    Article  CAS  Google Scholar 

  5. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).

    Article  CAS  Google Scholar 

  6. Zehr, J. P. & Paerl, H. W. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 481–525 (John Wiley & Sons, New Jersey, 2008).

    Book  Google Scholar 

  7. Riemann, L., Farnelid, H. & Steward, G. F. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat. Microb. Ecol. 61, 235–247 (2010).

    Article  Google Scholar 

  8. Zehr, J. P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19, 162–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294, 1534–1537 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Breitbarth, E., Oschlies, A. & LaRoche, J. Physiological constraints on the global distribution of Trichodesmium — effect of temperature on diazotrophy. Biogeosciences 4, 53–61 (2007).

    Article  CAS  Google Scholar 

  11. Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001).

    Article  CAS  Google Scholar 

  12. Church, M. J., Bjorkman, K. M., Karl, D. M., Saito, M. A. & Zehr, J. P. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol. Oceanogr. 53, 63–77 (2008).

    Article  CAS  Google Scholar 

  13. Langlois, R. J., Hummer, D. & LaRoche, J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl. Environ. Microbiol. 74, 1922–1931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goebel, N. L. et al. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ. Microbiol. 12, 3272–3289 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027–1031 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Webb, E. A., Ehrenreich, I. M., Brown, S. L., Valois, F. W. & Waterbury, J. B. Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean. Environ. Microbiol. 11, 338–348 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Zehr, J. P., Bench, S. R., Mondragon, E. A., McCarren, J. & DeLong, E. F. Low genomic diversity in tropical oceanic N2-fixing cyanobacteria. Proc. Natl Acad. Sci. USA 104, 17807–17812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moisander, P. H. et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327, 1512–1514 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Tripp, H. J. et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464, 90–94 (2010). An excellent paper describing the genome of an important uncultured cyanobacterium, which was assembled from sorted environmental samples, and detailing its novel metabolism.

    Article  CAS  PubMed  Google Scholar 

  20. Zehr, J. P. et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic Photosystem II. Science 322, 1110–1112 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52, 1317–1327 (2007).

    Article  CAS  Google Scholar 

  22. Lehtimaki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic sea cyanobacteria. Appl. Environ. Microbiol. 63, 1647–1656 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Laamanen, M., Kuosa, H. & Maximum, S. Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena. Boreal Environ. Res. 10, 19–30 (2005).

    Google Scholar 

  24. Foster, R. A. & Zehr, J. P. Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 8, 1913–1925 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bar Zeev, E. et al. Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea. ISME J. 2, 911–923 (2008).

    Article  CAS  Google Scholar 

  26. Carpenter, E. J. et al. Extensive bloom of a N2 fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 185, 273–283 (1999).

    Article  CAS  Google Scholar 

  27. Venrick, E. L. Distribution and significance of Richelia intracellularis Schmidt in North Pacific central gyre. Limnol. Oceanogr. 19, 437–445 (1974).

    Article  Google Scholar 

  28. Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl Acad. Sci. USA 105, 10460–10465 (2008). A paper detailing how the Amazon River enhances N 2 fixation and how the different diazotrophs present affect carbon sequestration in the area.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Kustka, A. B. et al. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol. Oceanogr. 48, 1869–1884 (2003).

    Article  CAS  Google Scholar 

  31. Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260 (2001).

    Article  CAS  Google Scholar 

  32. Bergquist, B. A. & Boyle, E. A. Dissolved iron in the tropical and subtropical Atlantic Ocean. Global Biogeochem. Cycles 20, GB1015 (2006).

    Article  CAS  Google Scholar 

  33. Blain, S., Bonnet, S. & Guieu, C. Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific. Biogeosciences 5, 269–280 (2008).

    Article  CAS  Google Scholar 

  34. Boyle, E. A., Bergquist, B. A., Kayser, R. A. & Mahowald, N. Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochim. Cosmochim. Acta 69, 933–952 (2005).

    Article  CAS  Google Scholar 

  35. Wu, J. F., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron in the olgotrophic North Atlantic and North Pacific. Science 293, 847–849 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Paerl, H. W., Prufertbebout, L. E. & Guo, C. Z. Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol. 60, 1044–1047 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rueter, J. G. Iron stimulation of photosynthesis and nitrogen-fixation in Anabaena-7120 and Trichodesmium (Cyanophyceae). J. Phycol. 24, 249–254 (1988).

    Article  CAS  Google Scholar 

  38. Chappell, P. D. & Webb, E. A. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol. 12, 13–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Kupper, H. et al. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol. 179, 784–798 (2008).

    Article  PubMed  Google Scholar 

  40. Shi, T., Sun, Y. & Falkowski, P. G. Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Trichodesmium erythraeum IMS101. Environ. Microbiol. 9, 2945–2956 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Fu, F. X. et al. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 53, 2472–2484 (2008).

    Article  CAS  Google Scholar 

  42. Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paczuska, L. & Kosakowska, A. Is iron a limiting factor of Nodularia spumigena blooms? Oceanologia 45, 679–692 (2003).

    Google Scholar 

  44. Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Fu, F. X., Zhang, Y. H., Bell, P. R. F. & Hutchins, D. A. Phosphate uptake and growth kinetics of Trichodesmium (Cyanobacteria) isolates from the North Atlantic Ocean and the Great Barrier Reef, Australia. J. Phycol. 41, 62–73 (2005).

    Article  CAS  Google Scholar 

  46. Mulholland, M. R., Floge, S., Carpenter, E. J. & Capone, D. G. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp. Mar. Ecol. Prog. Ser. 239, 45–55 (2002).

    Article  CAS  Google Scholar 

  47. Krauk, J. M., Villareal, T. A., Sohm, J. A., Montoya, J. P. & Capone, D. G. Plasticity of N: P ratios in laboratory and field populations of Trichodesmium spp. Aquat. Microb. Ecol. 42, 243–253 (2006).

    Article  Google Scholar 

  48. White, A. E., Spitz, Y. H., Karl, D. M. & Letelier, R. M. Flexible elemental stoichiometry in Trichodesmium spp. and its ecological implications. Limnol. Oceanogr. 51, 1777–1790 (2006).

    Article  CAS  Google Scholar 

  49. Orchard, E. D., Webb, E. A. & Dyhrman, S. T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ. Microbiol. 11, 2400–2411 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439, 68–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Beversdorf, L. J., White, A. E., Bjorkman, K. M., Letelier, R. M. & Karl, D. M. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnol. Oceanogr. 55, 1768–1778 (2010).

    Article  CAS  Google Scholar 

  52. Dyhrman, S. T. & Haley, S. T. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl. Environ. Microbiol. 72, 1452–1458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Degerholm, J., Gundersen, K., Bergman, B. & Soderback, E. Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp and Aphanizomenon sp. FEMS Microbiol. Ecol. 58, 323–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Moore, C. M. et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geosci. 2, 867–871 (2009). An excellent paper synthesizing new data with that available from databases to detail the mechanisms that control N 2 fixation in the Atlantic Ocean.

    Article  CAS  Google Scholar 

  56. Cavender-Bares, K. K., Karl, D. M. & Chisholm, S. W. Nutrient gradients in the western North Atlantic Ocean: relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 2373–2395 (2001).

    Article  CAS  Google Scholar 

  57. Wu, J. F., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science 289, 759–762 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Sohm, J. A., Mahaffey, C. & Capone, D. G. Assessment of relative phosphorus limitation of Trichodesmium spp. in the North Pacific, North Atlantic, and the north coast of Australia. Limnol. Oceanogr. 53, 2495–2502 (2008).

    Article  CAS  Google Scholar 

  59. Webb, E. A., Jakuba, R. W., Moffett, J. W. & Dyhrman, S. T. Molecular assessment of phosphorus and iron physiology in Trichodesmium populations from the western Central and western South Atlantic. Limnol. Oceanogr. 52, 2221–2232 (2007).

    Article  CAS  Google Scholar 

  60. Sanudo-Wilhelmy, S. A. et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411, 66–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Sohm, J. A. & Capone, D. G. Zonal differences in phosphorus pools, turnover and deficiency across the tropical North Atlantic Ocean. Global Biogeochem. Cycles 24, GB2008 (2010).

    Article  CAS  Google Scholar 

  62. Brown, M. T., Landing, W. M. & Measures, C. I. Dissolved and particulate Fe in the western and central North Pacific: results from the 2002 IOC cruise. Geochemistry Geophysics Geosystems 6, Q10001 (2005).

    Google Scholar 

  63. Mahowald, N. M. et al. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 19, GB4025 (2005).

    Google Scholar 

  64. Grabowski, M. N. W., Church, M. J. & Karl, D. M. Nitrogen fixation rates and controls at Stn ALOHA. Aquat. Microb. Ecol. 52, 175–183 (2008).

    Article  Google Scholar 

  65. Kitajima, S., Furuya, K., Hashihama, F., Takeda, S. & Kanda, J. Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnol. Oceanogr. 54, 537–547 (2009).

    Article  CAS  Google Scholar 

  66. Karl, D. M., Bidigare, R. R. & Letelier, R. M. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 1449–1470 (2001).

    Article  Google Scholar 

  67. Hynes, A. M., Chappell, P. D., Dyhrman, S. T., Doney, S. C. & Webb, E. A. Cross-basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 54, 1438–1448 (2009).

    Article  CAS  Google Scholar 

  68. Van Mooy, B. A. S. & Devol, A. H. Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnol. Oceanogr. 53, 78–88 (2008).

    Article  CAS  Google Scholar 

  69. Moutin, T. et al. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5, 95–109 (2008).

    Article  CAS  Google Scholar 

  70. Raimbault, P. & Garcia, N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences 5, 323–338 (2008).

    Article  CAS  Google Scholar 

  71. Stolte, W. et al. Stimulation of nitrogen-fixing cyanobacteria in a Baltic Sea plankton community by land-derived organic matter or iron addition. Mar. Ecol. Prog. Ser. 327, 71–82 (2006).

    Article  CAS  Google Scholar 

  72. Lilover, M. J. & Stips, A. The variability of parameters controlling the cyanobacteria bloom biomass in the Baltic Sea. J. Mar. Sys. 74, S108–S115 (2008).

    Article  Google Scholar 

  73. Moisander, P. H., Paerl, H. W., Dyble, J. & Sivonen, K. Phosphorus limitation and diel control of nitrogen-fixing cyanobacteria in the Baltic Sea. Mar. Ecol. Prog. Ser. 345, 41–50 (2007).

    Article  CAS  Google Scholar 

  74. Nausch, M., Nausch, G. & Wasmund, N. Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea. Mar. Ecol. Prog. Ser. 266, 15–25 (2004).

    Article  CAS  Google Scholar 

  75. Lips, I. & Lips, U. Abiotic factors influencing cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Hydrobiologia 614, 133–140 (2008).

    Article  Google Scholar 

  76. Nausch, M., Nausch, G., Wasmund, N. & Nagel, K. Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: a three-year study. J. Mar. Sys. 71, 99–111 (2008).

    Article  Google Scholar 

  77. Walve, J. & Larsson, U. Blooms of Baltic Sea Aphanizomenon sp (cyanobacteria) collapse after internal phosphorus depletion. Aquat. Microb. Ecol. 49, 57–69 (2007).

    Article  Google Scholar 

  78. Moisander, P. H., Steppe, T. F., Hall, N. S., Kuparinen, J. & Paerl, H. W. Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms. Mar. Ecol. Prog. Ser. 262, 81–95 (2003).

    Article  Google Scholar 

  79. Thingstad, T. F. et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309, 1068–1071 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Krom, M. D., Kress, N., Brenner, S. & Gordon, L. I. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36, 424–432 (1991).

    Article  CAS  Google Scholar 

  81. Man-Aharonovich, D., Kress, N., Bar Zeev, E., Berman-Frank, I. & Beja, O. Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environ. Microbiol. 9, 2354–2363 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Le Moal, M. & Biegala, I. C. Diazotrophic unicellular cyanobacteria in the northwestern Mediterranean Sea: a seasonal cycle. Limnol. Oceanogr. 54, 845–855 (2009).

    Article  CAS  Google Scholar 

  83. Ibello, V., Cantoni, C., Cozzi, S. & Civitarese, G. First basin-wide experimental results on N2 fixation in the open Mediterranean Sea. Geophys. Res. Lett. 37, L03608 (2010).

    Article  CAS  Google Scholar 

  84. Krom, M. D., Emeis, K. C. & Van Cappellen, P. Why is the Eastern Mediterranean phosphorus limited? Prog. Oceanogr. 85, 236–244 (2010).

    Article  Google Scholar 

  85. Mulholland, M. R. & Capone, D. G. in Indian Ocean Biogeochemical Processes and Ecological Variability (eds. Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H. & Smith, S. L.) 167–186 (American Geophysical Union, Washington D. C., 2009).

    Book  Google Scholar 

  86. Morrison, J. M. et al. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea process study. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 2053–2101 (1998).

    Article  CAS  Google Scholar 

  87. Capone, D. G. et al. An extensive bloom of the N2 fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser. 172, 281–292 (1998).

    Article  Google Scholar 

  88. Foster, R. A., Paytan, A. & Zehr, J. P. Seasonality of N2 fixation and nifH gene diversity in the Gulf of Aqaba (Red Sea). Limnol. Oceanogr. 54, 219–233 (2009).

    Article  CAS  Google Scholar 

  89. Carpenter, E. J., Subramaniam, A. & Capone, D. G. Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 51, 173–203 (2004).

    Article  CAS  Google Scholar 

  90. Sohm, J. A., Subramaniam, A., Gunderson, T., Carpenter, E. J. & Capone, D. G. Nitrogen fixation by Trichodesmium spp. and unicellular diazotrophs in the North Pacific subtropical gyre. J. Geophys. Res.Biogeosci. 29 Mar 2011 (doi:10.1029/2010JG001513).

  91. Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O. & Capone, D. G. Nitrogen fixation in the western equatorial Pacific: rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance. Global Biogeochem. Cycles 23, GB3012 (2009).

    Article  CAS  Google Scholar 

  92. Foster, R. A. et al. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol. Oceanogr. 52, 2517–2532 (2007).

    Article  Google Scholar 

  93. Foster, R. A., Subramaniam, A. & Zehr, J. P. Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic. Environ. Microbiol. 11, 741–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O'Neil, J. M. The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. J. Plankton Res. 20, 43–59 (1998).

    Article  Google Scholar 

  95. Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat. Microb. Ecol. 37, 85–94 (2004).

    Article  Google Scholar 

  96. Bordeleau, L. M. & Prevost, D. Nodulation and nitrogen fixation in extreme environments. Plant Soil 161, 115–125 (1994).

    Article  CAS  Google Scholar 

  97. Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol. 11, 1632–1645 (2009). An intriguing paper presenting a hypothesis to explain why free-living heterocystous cyanobacteria are found in cold waters and non-heterocystous filamentous cyanobacteria are found in warm waters.

    Article  CAS  PubMed  Google Scholar 

  98. Holl, C. M., Waite, A. M., Pesant, S., Thompson, P. A. & Montoya, J. P. Unicellular diazotrophy as a source of nitrogen to Leeuwin Current coastal eddies. Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 1045–1054 (2007).

    Article  Google Scholar 

  99. Rees, A. P., Gilbert, J. A. & Kelly-Gerreyn, B. A. Nitrogen fixation in the western English Channel (NE Atlantic Ocean). Mar. Ecol. Prog. Ser. 374, 7–12 (2009).

    Article  CAS  Google Scholar 

  100. Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J. & Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochem. Cycles 21, GB2028 (2007).

    Article  CAS  Google Scholar 

  101. Hutchins, D. A. et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52, 1293–1304 (2007).

    Article  CAS  Google Scholar 

  102. Levitan, O. et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob. Change Biol. 13, 531–538 (2007).

    Article  Google Scholar 

  103. Levitan, O. et al. Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations. Environ. Microbiol. 12, 1899–1912 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Kranz, S. A. et al. Combined effects of CO2 and light on the N2 fixing Cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol. 154, 334–345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Czerny, J., Ramos, J. B. E. & Riebesell, U. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6, 1865–1875 (2009).

    Article  CAS  Google Scholar 

  106. Ramos, J. L., Madueno, F. & Guerrero, M. G. Regulation of nitrogenase levels in Anabaena Sp ATCC 3047 and other filamentous cyanobacteria. Arch. Microbiol. 141, 105–111 (1985).

    Article  CAS  Google Scholar 

  107. Martin-Nieto, J., Herrero, A. & Flores, E. Control of nitrogenase mrna levels by products of nitrate assimilation in the cyanobacterium Anabaena sp. strain PCC-7120. Plant Physiol. 97, 825–828 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sanz-Alferez, S. & Del Campo, F. F. Relationship between nitrogen-fixation and nitrate metabolism in the Nodularia strains M1 and M2. Planta 194, 339–345 (1994).

    Article  CAS  Google Scholar 

  109. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163–167 (2007). An exciting modelling effort presenting a new hypothesis on the location of the greatest N 2 fixation in the ocean, suggesting that N 2 fixation and denitrification are closely spatially coupled.

    Article  CAS  PubMed  Google Scholar 

  110. Capone, D. G., Oneil, J. M., Zehr, J. & Carpenter, E. J. Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium-thiebautii. Appl. Environ. Microbiol. 56, 3532–3536 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fu, F. X. & Bell, P. R. F. Factors affecting N2 fixation by the cyanobacterium Trichodesmium sp GBR-TRLI101. FEMS Microbiol. Ecol. 45, 203–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Mulholland, M. R., Ohki, K. & Capone, D. G. Nutrient controls on nitrogen uptake and metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria). J. Phycol. 37, 1001–1009 (2001).

    Article  CAS  Google Scholar 

  113. Holl, C. M. & Montoya, J. P. Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria). J. Phycol. 41, 1178–1183 (2005).

    Article  CAS  Google Scholar 

  114. Davis, C. S. & McGillicuddy, D. J. Transatlantic abundance of the N2 fixing colonial cyanobacterium Trichodesmium. Science 312, 1517–1520 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Fong, A. A. et al. Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. ISME J. 2, 663–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Church, M. J. et al. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem. Cycles 23, GB2020 (2009).

    Article  CAS  Google Scholar 

  117. Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M. & Zehr, J. P. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71, 5362–5370 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Moisander, P. H., Beinart, R. A., Voss, M. & Zehr, J. P. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2, 954–967 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18, GB4028 (2004). A modelling study assessing nutrient limitation of different phytoplankton functional groups in the upper ocean.

    Article  CAS  Google Scholar 

  120. Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  122. Capone, D. G. in Nitrogen in the Marine Environment (eds Carpenter, E. J. & Capone, D. G.) 105–137 (Springer, New York, 1983).

    Book  Google Scholar 

  123. Howarth, R. W., Marino, R., Lane, J. & Cole, J. J. Nitrogen-fixation in fresh-water, estuarine, and marine ecosystems.1. Rates and importance. Limnol. Oceanogr. 33, 669–687 (1988).

    CAS  Google Scholar 

  124. Fulweiler, R. W., Nixon, S. W., Buckley, B. A. & Granger, S. L. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448, 180–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Bertics, V. J. et al. Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar. Ecol. Prog. Ser. 409, 1–15 (2010).

    Article  CAS  Google Scholar 

  126. Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326, 422–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Mehta, M. P. & Baross, J. A. Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science 314, 1783–1786 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Severin, I. & Stal, L. J. NifH expression by five groups of phototrophs compared with nitrogenase activity in coastal microbial mats. FEMS Microbiol. Ecol. 73, 55–67 (2010).

    CAS  PubMed  Google Scholar 

  129. Moffett, J. W., Goeffert, T. J. & Naqvi, S. W. A. Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 1341–1349 (2007).

    Article  Google Scholar 

  130. Bonnet, S. & Guieu, C. Atmospheric forcing on the annual iron cycle in the western Mediterranean Sea: a 1-year survey. J. Geophys. Res. 111, C09010 (2006).

    Article  CAS  Google Scholar 

  131. Breitbarth, E. et al. Dissolved iron (II) in the Baltic Sea surface water and implications for cyanobacterial bloom development. Biogeosciences 6, 2397–2420 (2009).

    Article  CAS  Google Scholar 

  132. Karl, D. M. et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 1529–1566 (2001).

    Article  CAS  Google Scholar 

  133. Dore, J. E., Brum, J. R., Tupas, L. M. & Karl, D. M. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnol. Oceanogr. 47, 1595–1607 (2002).

    Article  CAS  Google Scholar 

  134. Wasmund, N., Voss, M. & Lochte, K. Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar. Ecol. Prog. Ser. 214, 1–14 (2001).

    Article  CAS  Google Scholar 

  135. Tanaka, T., Rassoulzadegan, F. & Thingstad, T. F. Orthophosphate uptake by heterotrophic bacteria, cyanobacteria, and autotrophic nanoflagellates in Villefranche Bay, northwestern Mediterranean: vertical, seasonal, and short-term variations of the competitive relationship for phosphorus. Limnol. Oceanogr. 49, 1063–1072 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to M. Church, R. Foster, R. Langlois, J. LaRoche, P. Moisander and J. Zehr for providing Trichodesmium spp. nifH data and J. K. Moore for a model output, both of which were included in a previous version of this manuscript. Three anonymous reviewers helped to greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill A. Sohm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Upwelling

Wind-mediated movement of deep water to the surface.

Physical forcing

The effect of physical conditions and processes in the ocean on biological properties.

Diazotrophs

Organisms that can fix N2 by converting it to ammonia.

Heterocyst

A specialized cell with a thick cell wall that lacks photosystem II (PSII) and is the site of N2 fixation in some filamentous cyanobacteria.

Blooms

Areas of large growth or accumulation of a species.

Brackish

Describing water that has a salinity between fresh and marine water.

Dissolved Fe

Fe that can pass through a 0.4 μm filter.

Free Fe

A pool of Fe that is composed of Fe bound to inorganic ligands and a small amount of free ion (Fe3+) and is presumed to be bioavailable (often denoted Fe′).

Ligand

In this article, an organic molecule that binds Fe (potentially a siderophore).

Sulpholipid

A membrane lipid containing a sulphur (as opposed to P)-based head.

Alkaline phosphatase

A hydrolytic enzyme that cleaves phosphomonoesters from P-containing dissolved organic matter.

Blackman limitation

The limitation of the growth rate of an organism.

Liebig limitation

The limitation of the yield of an organism (as in a crop yield).

Gyre

A giant circular surface current that is present in the ocean.

Luxury uptake

The uptake of nutrients that are in excess of demand, and that can be made into storage products.

Eddies

Small-scale circular currents in which the water inside is typically different from the water outside.

C concentrating mechanism

The mechanism that increases the concentration of CO2 around ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo), in order to increase the rate of photosynthesis.

Anticyclonic eddies

Eddies with warm interior water and a centre that is slightly higher than the surrounding sea surface. They rotate clockwise in the northern hemisphere and anticlockwise in the southern hemisphere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohm, J., Webb, E. & Capone, D. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9, 499–508 (2011). https://doi.org/10.1038/nrmicro2594

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2594

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology