Key Points
-
Fungi interact with one another and respond to environmental cues using a sophisticated series of extracellular signals and cellular responses. Here, we focus on molecules secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological functions.
-
Germination of asexual spores (conidia) is inhibited by auto-inhibitors, which are produced by a wide range of ascomycetes and have varying specificities and structures.
-
Unknown extracellular signals regulate cell fusion events between germinated conidia, which forms the basis of the interconnected hyphal network; coordination of germination results in faster establishment of colonies and networks. During the communication that precedes these fusion events in Neurospora crassa, cells alternate between signal-sending and signal-perceiving states in order to efficiently coordinate growth towards one another without undergoing terminal developmental differentiation.
-
Communication signals within an individual (or cellular network) are used to regulate growth and development. During starvation in Saccharomyces cerevisiae, connecting fibrils develop between cells, and these fibrils are proposed to have roles in cell–cell communication.
-
Asexual development is regulated by both environmental conditions and developmental age, and has been extensively studied in Aspergillus nidulans. Common regulatory pathways regulate asexual development and mycotoxin production in Aspergillus spp.
-
Many ascomycetes secrete compounds that inhibit the growth of other organisms, including fungi, in their immediate environment. These compounds can cause cell cycle arrest, membrane damage and cell wall stress, or can block asexual reproduction.
-
Mycoparasites, which are fungi that parasitize other fungi, use extracellular sensing to guide them towards their prey. In Trichoderma spp., mutations in a G protein subunit that is involved in signal transduction affect the balance between asexual reproduction and mycoparasitism.
Abstract
It has been estimated that up to one quarter of the world's biomass is of fungal origin, comprising approximately 1.5 million species. In order to interact with one another and respond to environmental cues, fungi communicate with their own chemical languages using a sophisticated series of extracellular signals and cellular responses. A new appreciation for the linkage between these chemical languages and developmental processes in fungi has renewed interest in these signalling molecules, which can now be studied using post-genomic resources. In this Review, we focus on the molecules that are secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
McLaughlin, D. J., Hibbett, D. S., Lutzoni, F., Spatafora, J. W. & Vilgalys, R. The search for the fungal tree of life. Trends Microbiol. 17, 488–497 (2009).
Blackwell, M., Hibbett, D. S., Taylor, J. W. & Spatafora, J. W. Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98, 829–837 (2006).
Schoch, C. L. et al. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58, 224–239 (2009). This paper presents the most taxonomically complete phylogeny of the Ascomycota (and refines our understanding of evolution of their major ecologies and lifestyles).
Greenwald, C. J. et al. Temporal and spatial regulation of gene expression during asexual development of Neurospora crassa. Genetics 186, 1217–1230 (2010).
Springer, M. L. & Yanofsky, C. A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev. 3, 559–571 (1989).
Adams, T. H., Wieser, J. K. & Yu, J. H. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62, 35–54 (1998).
Allen, P. J. in Physiological Plant Pathology, (eds. R. Heitefull and P. H. Williams) 51–85 (Springer-Verlag, New York, 1976).
Inoue, M. et al. Self-germination inhibitors from Colletotrichum fragariae. J. Chem. Ecol. 22, 2111–2122 (1996).
Leite, B. & Nicholson, R. I. Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp. Mycol. 16, 76–86 (1992).
Tsurushima, T., Ueno, T., Fukami, H., Irie, H. & Inoue, M. Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Mol. Plant Microbe Interact. 8, 652–657 (1995).
Chitarra, G. S., Abee, T., Rombouts, F. M., Posthumus, M. A. & Dijksterhuis, J. Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl. Environ. Microbiol. 70, 2823–2829 (2004).
Horowitz, N. H., Charlang, G., Horn, G. & Williams, N. P. Isolation and identification of the conidial germination factor of Neurospora crassa. J. Bacteriol. 127, 135–140 (1976).
Charlang, G. W. & Horowitz, N. H. Germination and growth of Neurospora at low water activities. Proc. Natl Acad. Sci. USA 68, 260–262 (1971).
Köhler, E., Zur Kenntnis Der Vegetativen Anastomosen Der Pilze (II. Mitteilung). Planta 10, 495–522 (1930).
Roca, M. G., Arlt, J., Jeffree, C. E. & Read, N. D. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot. Cell 4, 911–919 (2005).
Roca, M. G. et al. Conidial anastomosis fusion between Colletotrichum species. Mycol. Res. 108, 1320–1326 (2004).
Ishikawa, F. H., Souza, E. A., Read, N. D. & Roca, M. G. Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biol. 114, 2–9 (2010).
Leu, L. S. Anastomosis in Venturia inaequalis (CKE) Wint. Thesis, Univ. Wisconsin, Madison (1967).
Wright, G. D., Arlt, J., Poon, W. C. K. & Read, N. D. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet. Biol. 44, 1–13 (2007).
Berepiki, A., Lichius, A., Shoji, J. Y., Tilsner, J. & Read, N. D. F-actin dynamics in Neurospora crassa. Eukaryot. Cell 9, 547–557 (2010).
Roca, M. G., Kuo, H. C., Lichius, A., Freitag, M. & Read, N. D. Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Eukaryot. Cell 9, 1171–1183 (2010). This paper evaluates the role of the cytoskeleton and nuclear dynamics during CAT formation and germling fusion.
Pandey, A., Roca, M. G., Read, N. D. & Glass, N. L. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot. Cell 3, 348–358 (2004).
Maerz, S. et al. The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179, 1313–1325 (2008).
Fleissner, A. et al. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot. Cell 4, 920–930 (2005).
Fleissner, A., Leeder, A. C., Roca, M. G., Read, N. D. & Glass, N. L. Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proc. Natl Acad. Sci. USA 106, 19387–19392 (2009). This paper describes signalling that occurs prior to cell fusion between N. crassa germlings, and forms the basis for the model of how genetically identical individuals undergo bidirectional communication without responding to their own signals.
Macias, M. J., Wiesner, S. & Sudol, M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Letts. 513, 30–37 (2002).
Ruiz-Roldán, M. C. et al. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. Eukaryot. Cell 9, 1216–1224 (2010).
Lopez-Berges, M. S., Rispail, N., Prados-Rosales, R. C. & Di Pietro, A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22, 2459–2475 (2010).
Kim, H. & Borkovich, K. A. Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot. Cell 5, 544–554 (2006).
Kim, H. & Borkovich, K. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol. Microbiol. 52, 1781–1798 (2004).
McMains, V. C., Liao, X. H. & Kimmel, A. R. Oscillatory signaling and network responses during the development of Dictyostelium discoideum. Ageing Res. Rev. 7, 234–248 (2008).
Ishitani, C. & Sakaguchi, K. I. Hereditary variation and recombination in Koji-molds (Aspergillus oryzae and Asp. sojae). V. Heterocaryosis. J. Gen. Appl. Microbiol. 2, 345–400 (1956).
Hickey, P. C., Jacobson, D., Read, N. D. & Glass, N. L. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet. Biol. 37, 109–119 (2002).
Aldabbous, M. S. et al. The ham-5, rcm-1 and rco-1 genes regulate hyphal fusion in Neurospora crassa. Microbiology 156, 2621–2629 (2010).
Read, N. D., Fleiβner, A., Roca, M. G. & Glass, N. L. in Cellular and Molecular Biology of Filamentous Fungi (eds Borkovich, K. A. & Ebbole, D. J.) 260–273 (ASM Press, Washington D. C., 2010). A comprehensive review of germling and hyphal fusion in filamentous ascomycetes.
Simonin, A. R., Rasmussen, C. G., Yang, M. & Glass, N. L. Genes encoding a striatin-like protein (ham-3) and a forkhead associated protein (ham-4) are required for hyphal fusion in Neurospora crassa. Fungal Genet. Biol. 47, 855–868 (2010).
Gaillard, S., Bartoli, M., Castets, F. & Monneron, A., Striatin, a calmodulin-dependent scaffolding protein, directly binds caveolin-1. FEBS Lett. 508, 49–52 (2001).
Torralba, S. & Heath, I. Cytoskeletal and Ca2+ regulation of hyphal tip growth and initiation. Curr. Topic Dev. Biol. 51, 135–187 (2001).
Craven, K. D., Velez, H., Cho, Y., Lawrence, C. B. & Mitchell, T. K. Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot. Cell 7, 675–683 (2008).
Prados Rosales, R. C. & Di Pietro, A. Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot. Cell 7, 162–171 (2008).
Sbrana, C., Fortuna, P. & Giovannetti, M. Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia 103, 307–316 (2010).
Stephenson, L. W., Erwin, D. C. & Leary, J. V. Hyphal anastomosis in Phytophthora capsici. Phytopathol. 64, 149–150 (1974).
Trinci, A. P. J. in The Ecology and Physiology of the Fungal Mycelium. (eds Jennings, D. H. & Rayner, A. D. M.) 23–52 (Cambridge Univ. Press, Cambridge, UK, 1984).
Bottone, E. J., Nagarsheth, N. & Chiu, K. Evidence of self-inhibition by filamentous fungi accounts for unidirectional hyphal growth in colonies. Can. J. Microbiol. 44, 390–393 (1998).
Varon, M. & Choder, M. Organization and cell-cell interaction in starved Saccharomyces cerevisiae colonies. J. Bacteriol. 182, 3877–3880 (2000).
Chen, H. & Fink, G. R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20, 1150–1161 (2006).
Hall, R. A. et al. CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog. 6, e1001193 (2010).
Hornby, J. M. et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982–2992 (2001). This report is the first structural identification of a fungal quorum sensing system, and details the common phenomenon of inoculum size effect.
Mosel, D. D., Dumitru, R., Hornby, J. M., Atkin, A. L. & Nickerson, K. W. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl. Environ. Microbiol. 71, 4938–4940 (2005).
Finkel, J. S. & Mitchell, A. P. Genetic control of Candida albicans biofilm development. Nature Rev. Microbiol. 9, 109–118 (2010).
Chen, H., Fujita, M., Feng, Q., Clardy, J. & Fink, G. R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl Acad. Sci. USA 101, 5048–5052 (2004).
Granshaw, T., Tsukamoto, M. & Brody, S. Circadian rhythms in Neurospora crassa: farnesol or geraniol allow expression of rhythmicity in the otherwise arrhythmic strains frq10, wc-1, and wc-2. J. Biol. Rhythms 18, 287–296 (2003).
Dunlap, J. C. et al. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harbor Symp. Quant. Biol. 72, 57–68 (2007).
Lee, B. N. & Adams, T. H. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 8, 641–651 (1994).
Etxebeste, O., Garzia, A., Espeso, E. A. & Ugalde, U. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol. 18, 569–576 (2010). An up-to-date review of the regulation of asexual development in A. nidulans.
Mah, J. H. & Yu, J. H. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot. Cell 5, 1585–1595 (2006).
Ogawa, M., Tokuoka, M., Jin, F. J., Takahashi, T. & Koyama, Y. Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae. Fungal Genet. Biol. 47, 10–18 (2010).
Clutterbuck, A. The genetics of conidiophore pigmentation in Aspergillus nidulans. J. Gen. Microbiol. 136, 1731–1738 (1990).
Yu, J.-H. Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology 38, 229–237 (2010).
Yu, J. H. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44, 145–154 (2006).
Soid-Raggi, G., Sánchez, O. & Aguirre, J. TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Mol. Microbiol. 59, 854–869 (2006).
Etxebeste, O. et al. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot. Cell 7, 38–48 (2008).
Etxebeste, O. et al. The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol. Microbiol. 73, 775–789 (2009).
Springer, M. L. Genetic control of fungal differentiation: The three sporulation pathways of Neurospora crassa. Bioessays 15, 365–374 (1993).
Berlin, V. & Yanofsky, C. Isolation and characterization of genes differentially expressed during conidiation of Neurospora crassa. Mol. Cell. Biol. 5, 849–855 (1985).
Olmedo, M., Ruger-Herreros, C. & Corrochano, L. M. Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa. Genetics 184, 651–658.
Colot, H. V. et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl Acad. Sci. USA 103, 10352–10357 (2006).
Liebmann, B., Muller, M., Braun, A. & Brakhage, A. A. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect. Immun. 72, 5193–5203 (2004).
Banno, S. et al. A catalytic subunit of cyclic AMP-dependent protein kinase, PKAC-1, regulates asexual differentiation in Neurospora crassa. Genes Genet. Syst. 80, 25–34 (2005).
Rerngsamran, P., Murphy, M. B., Doyle, S. A. & Ebbole, D. J. Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol. Microbiol. 56, 282–297 (2005).
Roncal, T., Cordobés, S., Sterner, O. & Ugalde, U. Conidiation in Penicillium cyclopium is induced by conidiogenone, an endogenous diterpene. Eukaryot. Cell 1, 823–829 (2002).
Park, D. & Robinson, P. M. Germination studies with Geotrichum candidum. Trans. Brit. Mycol. Soc. 54 83–92 (1970).
Tsitsigiannis, D. I., Zarnowski, R. & Keller, N. P. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J. Biol. Chem. 279, 11344–11353 (2004).
Dagenais, T. R. T. et al. Defects in conidiophore development and conidium-macrophage interactions in a dioxygenase mutant of Aspergillus fumigatus. Infect. Immun. 76, 3214–3220 (2008).
Calvo, A. M., Wilson, R. A., Bok, J. W. & Keller, N. P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66, 447–459 (2002). This review explores the relationship between fungal development and secondary metabolism in the Aspergilli, providing new insights into the shared regulatory networks that link the two processes.
Wieser, J., Yu, J. H. & Adams, T. H. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Curr. Genet. 32, 218–224 (1997).
Roze, L. V. et al. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem. 11, 33 (2010).
Bayram, O., Krappmann, S., Seiler, S., Vogt, N. & Braus, G. H. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet. Biol. 45, 127–138 (2008).
Champe, S. P. & el-Zayat, A. A. Isolation of a sexual sporulation hormone from Aspergillus nidulans. J. Bacteriol. 171, 3982–3988 (1989).
Mazur, P., Meyers, H. & Nakanishi, K. Structural elucidation of sporogenic fatty acid metabolites from Aspergillus nidulans. Tetrahedron Lett. 31, 3837–3840 (1990).
Tsitsigiannis, D. I., Kowieski, T., Zarnowski, R. & Keller, N. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151, 1809–1821 (2005).
Brown, S. H. et al. Oxygenase coordination is required for morphological transition and the host–fungus interaction of Aspergillus flavus. Mol. Plant Microbe Interact. 22, 882–894 (2009).
Ncango, D. M. et al. Oxylipin-coated hat-shaped ascospores of Ascoidea corymbosa. Can. J. Microbiol. 52, 1046–1050 (2006).
Innocenti, F. D., Pohl, U. & Russo, V. E. Photoinduction of protoperithecia in Neurospora crassa by blue light. Photochem. Photobiol. 37, 49–51 (1983).
Pöggeler, S., Nowrousian, M. & Kuck, U. in The Mycota I (eds Kues, U. & Fischer, R.) 325–355 (Springer, 2006). A comprehensive review of sexual development in the filamentous ascomycete fungi.
Li, L., Wright, S. J., Krystofova, S., Park, G. & Borkovich, K. A. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61, 423–452 (2007).
Bardwell, L. A walk-through of the yeast mating pheromone response pathway. Peptides 26, 339–350 (2005).
Bistis, G. N. Evidence for diffusable mating-type specific trichogyne attactants in Neurospora crassa. Exp. Mycol. 7, 292–295 (1983).
Schmoll, M., Seibel, C., Tisch, D., Dorrer, M. & Kubicek, C. P. A novel class of peptide pheromone precursors in ascomycetous fungi. Mol. Microbiol. 77, 1483–1501 (2010).
Metzenberg, R. L. Do perithecia smell perithecia? Fungal Genet. Newsl. 40, 46–48 (1993).
Palkova, Z. & Forstova, J. Yeast colonies synchronise their growth and development. J. Cell Sci. 113, 1923–1928 (2000).
Cutler, H. G., Cox, R. H. Crumley, F. G. & Cole, P. D., 6-pentyl-α-pyrone from Trichoderma harzianum – its plant-growth inhibitory and antimicrobial properties. Agric. Biol. Chem. 50, 2943–2945 (1986).
Scarselletti, R. & Faull, J. L. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol. Res. 98, 1207–1209 (1994).
El-Hasan, A., Walker, F., Schone, J. & Buchenauer, H. Antagonistic effect of 6-pentyl-α-pyrone produced by Trichoderma harzianum toward Fusarium moniliforme. J. Plant Dis. Protect. 114, 62–68 (2007).
Strobel, G. A., Dirkse, E., Sears, J. & Markworth, C. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiol. 147, 2943–2950 (2001).
Lorek, J., Poggeler, S., Weide, M. R., Breves, R. & Bockmuhl, D. P. Influence of farnesol on the morphogenesis of Aspergillus niger. J. Basic Microbiol. 48, 99–103 (2008).
Semighini, C. P., Hornby, J. M., Dumitru, R., Nickerson, K. W. & Harris, S. D. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol. Microbiol. 59, 753–764 (2006).
Dichtl, K. et al. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. Mol. Microbiol. 76, 1191–1204.
Semighini, C. P., Murray, N. & Harris, S. D. Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol. Lett. 279, 259–264 (2008).
Kim, K. K., Fravel, D. R. & Papavizas, G. C. Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology 78, 488–492 (1988).
Silar, P. Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol. Res. 109, 137–149 (2005).
Kerridge, D. The effect of actidione and other antifungal agents on nucleic acid and protein synthesis in Saccharomyces carlsbergensis. J. Gen. Microbiol. 19, 497–506 (1958).
Schrettl, M. et al. Self-protection against gliotoxin — a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog. 6, e1000952 (2010).
Theis, T., Wedde, M., Meyer, V. & Stahl, U. The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob. Agents Chemo. 47, 588–593 (2003).
Leiter, E. et al. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob. Agents Chemo. 49, 2445–2453 (2005).
Binder, U., Oberparleiter, C., Meyer, V. & Marx, F. The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol. Microbiol. 75, 294–307 (2010).
Binder, U., Chu, M. L., Read, N. D. & Marx, F. The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. Eukaryot. Cell 9, 1374–1382 (2010).
Marquina, D., Santos, A. & Peinado, J. M., Biology of killer yeasts. Int. Microbiol. 5, 65–71 (2002).
Chet, I., Harman, G. E. & Baker, R. Trichoderma hamatum:its hyphal interactions with Rhizoctonia solani and Pythium spp. Microbial Ecol. 7, 29–38 (1981).
Elad, Y., Chet, I., Boyle, P. & Henis, Y. Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii — scanning electron-microscopy and fluorescence microscopy. Phytopathol. 73, 85–88 (1983).
Nordbring-Hertz, B., Frimnan, E. & Veenhuis, M. Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. Antonie Van Leeuwenhoek 55, 237–244 (1989).
Rocha-Ramirez, V., Omero, C., Chet, I., Horwitz, B. A. & Herrera-Estrella, A. Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot. Cell 1, 594–605 (2002).
Reithner, B. et al. The G protein α-subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet. Biol. 42, 749–760 (2005). This paper studied the impact of deletion of the tga1 gene (encoding the Gα subunit of a G protein) on mycoparasitism-related processes in T. atroviride.
Mukherjee, M., Mukherjee, P. K. & Kale, S. P. cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153, 1734–1742 (2007).
Omero, C. et al. G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycol. Res. 103, 1637–1642 (1999).
Reithner, B. et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet. Biol. 44, 1123–1133 (2007).
Mendoza-Mendoza, A. et al. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA 100, 15965–15970 (2003).
Mukherjee, P. K., Latha, J., Hadar, R. & Horwitz, B. A. TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot. Cell 2, 446–455 (2003).
Seidl, V. et al. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10, 567 (2009).
Tucker, C. L., High-throughput cell-based assays in yeast. Drug Discov. Today 7, S125–S130 (2002).
Dunlap, J. C. et al. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv. Genet. 57, 49–96 (2007).
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. Trichoderma species — opportunistic, avirulent plant symbionts. Nature Rev. Microbiol. 2, 43–56 (2004).
Nemcovic, M., Jakubikova, L., Viden, I. & Farkas, V. Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol. Lett. 284, 231–236 (2008).
Garrett, M. K. & Robinson, P. M. A stable inhibitor of spore germination produced by fungi. Arch. Mikrobiol. 67, 370–371 (1969).
Antonov, A., Stewart, A. & Walter, M. Inhibition of conidium germination and mycelial growth of Botrytis cinerea by natural products. Proc. 50th N.Z. Plant Protection Conf. 159–164 (1997).
Stinson, M., Ezra, D., Hess, W. M., Sears, J. & Strobel, G. An endophytic Gliocladium sp of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci. 165, 913–922 (2003).
Aneja, M., Gianfagna, T. J. & Hebbar, P. K. Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiol. Mol. Plant Pathol. 67, 304–307 (2005).
El-Hasan, A., Walker, F., Schone, J. & Buchenauer, H. Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur. J. Plant Pathol. 124, 457–470 (2009).
Harris, G. H. et al. Isolation and structure elucidation of viridiofungin-A, viridiofungin-B and viridiofungin-C. Tetrahedron Lett. 34, 5235–5238 (1993).
Park, D. & Robinson, P. M. Isolation and bioassay of a fungal morphogen. Nature 203, 988–989 (1964).
Robinson, P. M. & Park, D. Citrinin — a fungistatic antibiotic and narrowing factor. Nature 211, 883–884 (1966).
Brian, P. W. & Hemming, H. G. Production of antifungal and antibacterial substances by fungi; preliminary examination of 166 strains of Fungi Imperfecti. J. Gen. Microbiol. 1, 158–167 (1947).
Jang, K. S., Kim, H. M. & Chung, B. K. Purification and antifungal activities of an antibiotic produced by Gliocladium virens G1 against plant pathogens. Plant Pathol. J. 17, 52–56 (2001).
Acknowledgements
A.C.L. and J.P.-G. are supported by a research grant from the US National Science Foundation, which was awarded to N.L.G. for studies on germling and hyphal anastomosis. We thank M. North for helpful comments on the manuscript and colleagues for their contributions to the work described.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
FURTHER INFORMATION
Glossary
- Hyphae
-
Multicellular filaments that grow by tip extension.
- Mycelium
-
A fungal colony made up of interconnected hyphae.
- Conidiophores
-
Specialized structures that produce asexual spores (conidia).
- Germlings
-
Aexual spores that have recently germinated.
- Chemotropism
-
Growth of a cell towards a concentration gradient of a chemical stimulus.
- Optical tweezers
-
A microscope equipped with a highly focused laser beam that provides attractive or repulsive forces, which allows for the manipulation of objects such as cells.
- Non-autonomous trait
-
The phenomenon of a genetic mutation in one cell affecting the phenotype of other cells, regardless of their genotype
- Orthologue
-
One of two or more functionally equivalent genes that are derived from a common ancestor.
- Basal fungi
-
Four diverse fungal groups (arbuscular mycorrhizal fungi, microsporidia, chytrids and zygomycetes) that form the base of the fungal phylogenetic tree.
- Oomycota
-
A phylogenetically distinct lineage of fungus-like eukaryotes.
- Negative autotropism
-
A mode of behaviour in which cells actively grow away from one another.
- Quorum sensing
-
Extracellular signalling that coordinates cellular behaviour according to population density.
- Pseudohyphae
-
Chains of elongated cells that arise by budding.
- G proteins
-
Guanine-nucleotide-binding proteins that coordinate extracellular-signal transmission and/or reception responses within a cell.
- Metabolome
-
The complete set of cellular metabolites (including hormones, small-molecule signals and metabolite intermediates).
- Antibiosis
-
Antagonistic interactions between two or more individuals that occur at a distance through the production of extracellular molecules.
- Mycoparasitism
-
A situation in which one fungus parasitizes (that is, benefits at the expense of) a prey fungus.
- Deletion collections
-
Collections of strains containing individuals that are derived from a common parent. Within the collection, each strain contains a single deletion of a predicted gene.
Rights and permissions
About this article
Cite this article
Leeder, A., Palma-Guerrero, J. & Glass, N. The social network: deciphering fungal language. Nat Rev Microbiol 9, 440–451 (2011). https://doi.org/10.1038/nrmicro2580
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2580
This article is cited by
-
Diversity of information pathways drives sparsity in real-world networks
Nature Physics (2024)
-
MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei
Scientific Reports (2023)
-
Cytochalasans and azaphilones: suitable chemotaxonomic markers for the Chaetomium species
Applied Microbiology and Biotechnology (2021)
-
Fungal diversity in soils across a gradient of preserved Brazilian Cerrado
Journal of Microbiology (2017)
-
Effects of Three Volatile Oxylipins on Colony Development in Two Species of Fungi and on Drosophila Larval Metamorphosis
Current Microbiology (2015)