Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The archaeal cell envelope

Key Points

  • The cell envelope of archaea is fundamentally different from bacteria in that it does not contain peptidoglycan, and archaeal membranes are composed of ether lipids instead of ester lipids.

  • Most archaea are surrounded by a surface-layer (S-layer), which is a proteinaceous two-dimensional crystal layer. Some archaeal cell envelopes contain pseudomurein or other unique sugar polymers.

  • Most of the extracellular archaeal proteins are glycosylated (N-linked, O-linked or both). The archaeal N-glycosylation pathway bears similar features to both the eukaryotic and the bacterial pathway. The known archaeal N-glycans are exceedingly diverse in their composition and structure.

  • Most archaeal pili and all archaeal flagella studied to date are assembled by simple type IV pilin-like machineries.

Abstract

At first glance, archaea and bacteria look alike; however, the composition of the archaeal cell envelope is fundamentally different from the bacterial cell envelope. With just one exception, all archaea characterized to date have only a single membrane and most are covered by a paracrystalline protein layer. This Review discusses our current knowledge of the composition of the archaeal cell surface. We describe the wide range of cell wall polymers, O- and N-glycosylated extracellular proteins and other cell surface structures that archaea use to interact with their environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of surface envelope types across the domain of Archaea.
Figure 2: Cell wall profiles of different archaea.
Figure 3: Models of the archaeal S-layer.
Figure 4: Schematic model of the N-glycosylation pathway in the three domains of life.
Figure 5: Electron micrographs of different archaea possessing a range of surface appendages.

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Houwink, A. L. & Le Poole, J.B. Eine Struktur in der Zellmembran einer Bakterie. Physikalische Verhandlungen 3, 98 (1952).

    Google Scholar 

  4. Kandler, O. & Konig, H. Chemical composition of peptidoglycan free cell walls of methanogenic bacteria. Arch. Microbiol. 118, 141–152 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Cavicchioli, R. Archaea — timeline of the third domain. Nature Rev. Microbiol. 9, 51–61 (2011).

    Article  CAS  Google Scholar 

  6. Beveridge, T. J. Bacterial surface structure, physicochemistry and geo-reactivity. Geochim. Cosmochim. Acta 69, A668 (2005).

    Google Scholar 

  7. Sara, M. & Sleytr, U. B. Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. Prog. Biophys. Mol. Biol. 65, 83–111 (1996). A comprehensive overview of bacterial crystalline S-layer proteins, also giving insights into their properties for nanobiotechnological applications

    Article  CAS  PubMed  Google Scholar 

  8. Houwink, A. L. Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J. Gen. Microbiol. 15, 146–150 (1956). Historical electron microscope study describing the first two-dimensional hexagonal crystal lattice of an S-layer

    Article  CAS  PubMed  Google Scholar 

  9. Grogan, D. W. Isolation and fractionation of cell envelope from the extreme thermoacidophile Sulfolobus acidocaldarius. J. Microbiol. Methods 26, 35–43 (1996).

    Article  CAS  Google Scholar 

  10. Veith, A. et al. Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol. Microbiol. 73, 58–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Beveridge, T. J., Patel, G. B., Harris, B. J. & Sprott, G. D. The ultrastructure of Methanothrix concilii, a mesophilic aceticlastic methanogen. Can. J. Microbiol. 32, 703–710 (1986).

    Article  Google Scholar 

  12. Zeikus, J. G. & Bowen, V. G. Fine structure of Methanospirillum hungatii. J. Bacteriol. 121, 373–380 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beveridge, T. J. & Graham, L. L. Surface layers of bacteria. Microbiol. Mol. Biol. Rev. 55, 684–705 (1991).

    CAS  Google Scholar 

  14. Beveridge, T. Jv., Stewart, M., Doyle, R. J. & Sprott, G. D. Unusual stability of the Methanospirillum hungatei sheath. J. Bacteriol. 162, 728–737 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Firtel, M., Southam, G., Harauz, G. & Beveridge, T. J. Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei Gp1 as an S-layer. J. Bacteriol. 175, 7550–7560 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sprott, G. D., Colvin, J. R. & Mckellar, R. C. Spheroplasts of Methanospirillum hungatii formed upon treatment with dithiothreitol. Can. J. Microbiol. 25, 730–738 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Zehnder, A. J. B., Huser, B. A., Brock, T. D. & Wuhrmann, K. Characterization of an acetate decarboxylating, non hydrogen oxidizing methane bacterium. Arch. Microbiol. 124, 1–11 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Shaw, P. J., Hills, G. J., Henwood, J. A., Harris, J. E. & Archer, D. B. Three-dimensional architecture of the cell sheath and septa of Methanospirillum hungatei. J. Bacteriol. 161, 750–757 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Beveridge, T. J. Use of the Gram stain in microbiology. Biotech. Histochem. 76, 111–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Messner, P. & Sleytr, U. B. Asparaginyl-rhamnose:a novel type of protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett. 228, 317–320 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Messner, P., Pum, D. & Sleytr, U. B. Characterization of the ultrastructure and the self-Assembly of the surface-layer of Bacillus stearothermophilus strain Nrs 2004/3a. J. Ultrastruct. Mol. Struct. Res. 97, 73–88 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Kandler, O. & Koenig, H. in The Biochemistry of Archaea (Archaebacteria) (eds M. Kates et al.) 223-333 (Elsevier, the Netherlands, 1993). An excellent and insightful overview of the different cell envelopes among the Archaea.

    Book  Google Scholar 

  23. Konig, H., Hartmann, E. & Karcher, U. Pathways and principles of the biosynthesis of methanobacterial cell wall polymers. Syst. Appl. Microbiol. 16, 510–517 (1994).

    Article  Google Scholar 

  24. Scheffers, D. J. & Pinho, M. G. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69, 585–607 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Claus, H. & Koenig, H. (eds) 231-251 Cell Envelopes of Methanogens (Springer, Berlin, 2010).

    Google Scholar 

  26. Kreisl, P. & Kandler, O. Chemical structure of the cell wall polymer of Methanosarcina. Syst. Appl. Microbiol. 7, 293–299 (1986).

    Article  CAS  Google Scholar 

  27. Sowers, K. R., Boone, J. E. & Gunsalus, R. P. Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl. Environ. Microbiol. 59, 3832–3839 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Hartmann, E. & Konig, H. Nucleotide-activated oligosaccharides are intermediates of the cell wall polysaccharide of Methanosarcina barkeri. Biol. Chem. Hoppe Seyler 372, 971–974 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Tindall, B. J., Ross, H. N. M. & Grant, W. D. Natronobacterium gen. nov. and Natronococcus gen. nov., 2 new genera of haloalkaliphilic archaebacteria. Syst. Appl. Microbiol. 5, 41–57 (1984).

    Article  Google Scholar 

  31. Niemetz, R., Karcher, U., Kandler, O., Tindall, B. J. & Konig, H. The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur. J. Biochem. 249, 905–911 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kocur, M., Martinec, T. & Smid, B. Fine structure of extreme halophilic cocci. Microbios 5, 101–107 (1972).

    CAS  PubMed  Google Scholar 

  33. Steber, J. & Schleifer, K. H. N-glycylglucosamine: a novel constituent in the cell wall of Halococcus morrhuae. Arch. Microbiol. 123, 209–212 (1979).

    Article  CAS  Google Scholar 

  34. Schleifer, K. H., Steber, J. & Mayer, H. Chemical composition and structure of the cell wall of Halococcus morrhuae. Zentralblatt. Bakteriol. Parasitenkd Infekt. Hyg. C3, 171–178 (1982).

    Google Scholar 

  35. Steber, J. & Schleifer, K. H. Halococcus morrhuae: a sulfated heteropolysaccharide as structural component of bacterial cell wall. Arch. Microbiol. 105, 173–177 (1975).

    Article  CAS  PubMed  Google Scholar 

  36. Bolhuis, H. et al. The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7, 169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashiuchi, M. & Misono, H. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Microbiol. Biotechnol. 59, 9–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: Protection and control of the cell surface. Nature Rev. Cancer 4, 45–60 (2004).

    Article  CAS  Google Scholar 

  39. Golyshina, O. V. & Timmis, K. N. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 7, 1277–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Darland, G., Brock, T. D., Samsonoff, W. & Conti, S. F. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170, 1416–1418 (1970).

    Article  CAS  PubMed  Google Scholar 

  41. Segerer, A., Langworthy, T. A. & Stetter, K. O. Thermoplasma acidophilum and Thermoplasma volcanium spp. nov. from solfatara fields. Syst. Appl. Microbiol. 10, 161–171 (1988).

    Article  Google Scholar 

  42. Yang, L. L. & Haug, A. Purification and partial characterization of a procaryotic glycoprotein from the plasma membrane of Thermoplasma acidophilum. Biochim. Biophys. Acta 556, 265–277 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, P. F. Lipoglycans from Mycoplasmas. Crit. Rev. Microbiol. 11, 157–186 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. Langworthy, T. A. Lipids of archaebacteria — extreme halophiles, methanogens and thermoacidophiles. J. Am. Oil. Chem. Soc. 59, A285 (1982).

    Google Scholar 

  45. Rachel, R., Wyschkony, I., Riehl, S. & Huber, H. The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1, 9–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Burghardt, T., Nather, D. J., Junglas, B., Huber, H. & Rachel, R. The dominating outer membrane protein of the hyperthermophilic archaeum Ignicoccus hospitalis: a novel pore-forming complex. Mol. Microbiol. 63, 166–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kuper, U., Meyer, C., Muller, V., Rachel, R. & Huber, H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc. Natl Acad. Sci. USA 107, 3152–3156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soler, N., Marguet, E., Verbavatz, J. M. & Forterre, P. Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res. Microbiol. 159, 390–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Reysenbach, A. L. et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Zeitler, R., Hochmuth, E., Deutzmann, R. & Sumper, M. Exchange of Ser4 for Val, Leu or Asn in the sequon AsnAlaSer does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium. Glycobiology 8, 1157–1164 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Voisin, S. et al. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280, 16586–16593 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sumper, M., Berg, E., Mengele, R. & Strobel, I. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J. Bacteriol. 172, 7111–7118 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paul, G., Lottspeich, F. & Wieland, F. Asparaginyl-N-Acetylgalactosamine. Linkage unit of halobacterial glycosaminoglycan. J. Biol. Chem. 261, 1020–1024 (1986).

    CAS  PubMed  Google Scholar 

  55. Mescher, M. F. & Strominger, J. L. Purification and characterization of a prokaryotic glycoprotein from the cell-envelope of Halobacterium salinarium. J. Biol. Chem. 251, 2005–2014 (1976). The first report of a glycosylated prokaryotic protein.

    CAS  PubMed  Google Scholar 

  56. Kessel, M., Volker, S., Santarius, U., Huber, R. & Baumeister, W. 3-Dimensional reconstruction of the surface protein of the extremely thermophilic archaebacterium Archaeoglobus fulgidus. Syst. Appl. Microbiol. 13, 207–213 (1990).

    Article  CAS  Google Scholar 

  57. Kessel, M., Wildhaber, I., Cohen, S. & Baumeister, W. 3-Dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead-Sea. EMBO J. 7, 1549–1554 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peyfoon, E. et al. The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea 29 Sep 2010 (doi:10.1155/2010/754101).

    Article  CAS  Google Scholar 

  59. Ng, S., Chaban, B. & Jarrell, K. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J. Mol. Microbiol. Biotechnol. 11, 167–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Ng, S. Y. et al. Genetic and mass spectrometry analysis of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J. Bacteriol. 193, 804–814 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Elferink, M. G., Albers, S. V., Konings, W. N. & Driessen, A. J. Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39, 1494–1503 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Kikuchi, A., Sagami, H. & Ogura, K. Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium. J. Biol. Chem. 274, 18011–18016 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Konrad, Z. & Eichler, J. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem. J. 366, 959–964 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chaban, B., Logan, S. M., Kelly, J. F. & Jarrell, K. F. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae. J. Bacteriol. 191, 187–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kelly, J., Logan, S. M., Jarrell, K. F., VanDyke, D. J. & Vinogradov, E. A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr. Res. 344, 648–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. VanDyke, D. J. et al. Identification of a putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis. J. Bacteriol. 190, 5300–5307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yurist-Doutsch, S. et al. N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM. Mol. Microbiol. 75, 1047–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Magidovich, H. et al. AglP is a S-adenosyl-L-methionine-dependent-methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii. Mol. Microbiol. 76, 190–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Abu-Qarn, M. et al. Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J. Mol. Biol. 374, 1224–1236 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Nita-Lazar, M., Wacker, M., Schegg, B., Amber, S. & Aebi, M. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Glover, K. J., Weerapana, E., Numao, S. & Imperiali, B. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem. Biol. 12, 1311–1315 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schwarz, F. et al. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nature Chem. Biol. 6, 264–266 (2010).

    Article  CAS  Google Scholar 

  73. Zufferey, R. et al. Stt3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 14, 4949–4960 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan, Q., Prestwich, G. D. & Lennarz, W. J. The Ost1p subunit of yeast oligosaccharyl transferase recognizes the peptide glycosylation site sequence, AsnX-Ser/Thr. J. Biol. Chem. 274, 5021–5025 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Dempski, R. E. & Imperiali, B. Heterologous expression and biophysical characterization of soluble oligosaccharyl transferase subunits. Arch. Biochem. Biophys. 431, 63–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Igura, M. et al. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 27, 234–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Brockl, G. et al. Analysis and nucleotide sequence of the genes encoding the surface layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur. J. Biochem. 199, 147–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Karcher, U. et al. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J. Biol. Chem. 268, 26821–26826 (1993).

    CAS  PubMed  Google Scholar 

  79. Nusser, E. & Konig, H. S-layer studies on 3 species of Methanococcus living at different temperatures. Can. J. Microbiol. 33, 256–261 (1987).

    Article  CAS  Google Scholar 

  80. Engelhardt, H. & Peters, J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Struct. Biol. 124, 276–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Mengele, R. & Sumper, M. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J. Biol. Chem. 267, 8182–8185 (1992).

    CAS  PubMed  Google Scholar 

  82. Paul, G. & Wieland, F. Sequence of the halobacterial glycosaminoglycan. J. Biol. Chem. 262, 9587–9593 (1987).

    CAS  PubMed  Google Scholar 

  83. Magidovich, H. & Eichler, J. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol. Lett. 300, 122–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Maita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. & Kohda, D. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J. Biol. Chem. 285, 4941–4950 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Nothaft, H. & Szymanski, C. M. Protein glycosylation in bacteria: sweeter than ever. Nature Rev. Microbiol. 8, 765–778 (2010).

    Article  CAS  Google Scholar 

  86. Stimson, E. et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl-2, 4-diacetamido-2, 4, 6-trideoxyhexose. Mol. Microbiol. 17, 1201–1214 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Thibault, P. et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Schirm, M. et al. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48, 1579–1592 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Grubman, A. et al. Vitamin B6 is required for full motility and virulence in Helicobacter pylori. MBio 1, e00112–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Virji, M. et al. The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol. Microbiol. 5, 1831–1841 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Hettmann, T. et al. Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius. J. Biol. Chem. 273, 12032–12040 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Koning, S. M., Albers, S. V., Konings, W. N. & Driessen, A. J. Sugar transport in (hyper)thermophilic archaea. Res. Microbiol. 153, 61–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Albers, S. V., Koning, S. M., Konings, W. N. & Driessen, A. J. Insights into ABC transport in archaea. J. Bioenerg. Biomembr. 36, 5–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Antón, J., Meseguer, I. & Rodríguez-Valera, F. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 54, 2381–2386 (1988).

    PubMed  PubMed Central  Google Scholar 

  95. Rinker, K. D. & Kelly, R. M. Growth physiology of the hyperthermophilic Archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 62, 4478–4485 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Paramonov, N. A. et al. The structure of the exocellular polysaccharide produced by the Archaeon Haloferax gibbonsii (ATCC 33959). Carbohydr. Res. 309, 89–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Parolis, L. A. et al. Structural studies on the acidic exopolysaccharide from Haloferax denitrificans ATCC 35960. Carbohydr. Res. 319, 133–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Nicolaus, B., Manca, M. C., Romano, I. & Lama, L. Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol. Lett. 109, 203–206 (2003).

    Article  Google Scholar 

  99. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  100. Flemming, H. C. & Wingender, J. The biofilm matrix. Nature Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  Google Scholar 

  101. Zolghadr, B. et al. Appendage mediated surface adherence of Sulfolobus solfataricus. J. Bacteriol. 192, 104–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Koerdt, A., Godeke, J., Berger, J., Thormann, K. M. & Albers, S. V. Crenarchaeal biofilm formation under extreme conditions. PLoS ONE 5, e14104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stetter, K. O., Konig, H. & Stackebrandt, E. Pyrodictium gen. nov., a new genus of submarine disc shaped sulfur reducing archaebacteria growing optimally at 105 °C. Syst. Appl. Microbiol. 4, 535–551 (1983).

    Article  CAS  PubMed  Google Scholar 

  104. Horn, C., Paulmann, B., Kerlen, G., Junker, N. & Huber, H. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J. Bacteriol. 181, 5114–5118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rieger, G. et al. Ultrastructure of Pyrodictium cells and extracellular tubules, analysed by TEM and SEM. Eur. J. Cell Biol. 74, 96–96 (1997).

    Google Scholar 

  106. Nickell, S., Hegerl, R., Baumeister, W. & Rachel, R. Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141, 34–42 (2003).

    Article  PubMed  Google Scholar 

  107. Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Rudolph, C., Wanner, G. & Huber, R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 2336–2344 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rieger, G., Rachel, R., Hermann, R. & Stetter, K. O. Ultrastructure of the hyperthermophilic Archaeon Pyrodictium abyssi. J. Struct. Biol. 115, 78–87 (1995).

    Article  Google Scholar 

  110. Thoma, C. et al. The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ. Microbiol. 10, 2785–2795 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Kalmokoff, M. L. & Jarrell, K. F. Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae. J. Bacteriol. 173, 7113–7125 (1991). First report showing that archaeal flagellins have class III signal peptides and are therefore structurally linked to type IV pili.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Szabo, Z. et al. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 189, 772–778 (2007). Bioinformatics were used to identify a multitude of possible type IV pilins in archaeal genomes.

    Article  CAS  PubMed  Google Scholar 

  113. Strom, M. S., Nunn, D. N. & Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl Acad. Sci. USA 90, 2404–2408 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Albers, S. V., Szabo, Z. & Driessen, A. J. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185, 3918–3925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bardy, S. L. & Jarrell, K. F. FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208, 53–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Bardy, S. L. & Jarrell, K. F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol. Microbiol. 50, 1339–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Szabo, Z., Albers, S. V. & Driessen, A. J. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus J. Bacteriol. 188, 1437–1443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Muller, D. W. et al. The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage. J. Bacteriol. 191, 6465–6468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Frols, S. et al. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J. Bacteriol. 189, 8708–8718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gotz, D. et al. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol. 8, R220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Frols, S. et al. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol. 70, 938–952 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Albers, S. V. et al. Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181, 4285–4291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zolghadr, B., Weber, S., Szabo, Z., Driessen, A. J. & Albers, S. V. Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol. Microbiol. 64, 795–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Zolghadr, B., Klingl, A., Rachel, R., Driessen, A. J. & Albers, S. V. The bindosome is a structural component of the Sulfolobus solfataricus cell envelope. Extremophiles 15, 235–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ng, S. Y., Chaban, B. & Jarrell, K. F. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J. Mol. Microbiol. Biotechnol. 11, 167–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Ng, S. Y., Zolghadr, B., Driessen, A. J., Albers, S. V. & Jarrell, K. F. Cell surface structures of archaea. J. Bacteriol. 190, 6039–6047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marwan, W., Alam, M. & Oesterhelt, D. Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J. Bacteriol. 173, 1971–1977 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Streif, S., Staudinger, W. F., Marwan, W. & Oesterhelt, D. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J. Mol. Biol. 384, 1–8 (2008). This study demonstrated that archaeal flagella movement is driven by ATP hydrolysis and not by the proton motive force.

    Article  CAS  PubMed  Google Scholar 

  129. Schlesner, M. et al. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol. 9, 56 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chaban, B. et al. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon Methanococcus maripaludis. Mol. Microbiol. 66, 596–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Henneberger, R., Moissl, C., Amann, T., Rudolph, C. & Huber, R. New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface. Appl. Environ. Microbiol. 72, 192–199 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nather, D. J., Rachel, R., Wanner, G. & Wirth, R. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J. Bacteriol. 188, 6915–6923 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tripepi, M., Imam, S. & Pohlschroder, M. Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol. 192, 3093–3102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bettstetter, M., Peng, X., Garrett, R. A. & Prangishvili, D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315, 68–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Pyatibratov, M. G. et al. Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui. Can. J. Microbiol. 54, 835–844 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Leigh, J. A., Albers, S. V., Atomi, H. & Allers, T. Model organisms for genetics in the domain archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol. Rev. 7 Mar 2011 (doi: 10.1111/j. 1574-69762011.00265.x).

  137. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710–1713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008). References 137 and 138 demonstrate that the ESCRTIII proteins localize to the mid-cell during crenarchaeal cell division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev. Microbiol. 8, 731–741 (2010).

    Article  CAS  Google Scholar 

  140. Wirth, R. et al. The mode of cell wall growth in selected Archaea follows the general mode of cell wall growth in Bacteria — an analysis using fluorescent dyes. Appl. Environ. Microbiol. 77, 1556–1562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kates, M. Archaebacterial lipids — structure, biosynthesis and function. Biochem. Soc. Symp. 51–72 (1992).

  142. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008).

    Article  CAS  Google Scholar 

  143. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rachel, R. (ed.) Ch. 9 Cell Envelopes of Crenarchaeota and Nanoarchaeota (Springer, Berlin, 2010).

    Book  Google Scholar 

  145. Baumeister, W., Wildhaber, I. & Phipps, B. M. Principles of organization in eubacterial and archaebacterial surface-proteins. Can. J. Microbiol. 35, 215–227 (1989).

    Article  CAS  PubMed  Google Scholar 

  146. Peters, J. et al. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J. Mol. Biol. 245, 385–401 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Pruschenk, R. & Baumeister, W. 3-Dimensional structure of the surface protein of Sulfolobus solfataricus. Eur. J. Cell Biol. 45, 185–191 (1988).

    Google Scholar 

  148. Wildhaber, I., Santarius, U. & Baumeister, W. 3-Dimensional structure of the surface protein of Desulfurococcus mobilis. J. Bacteriol. 169, 5563–5568 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Messner, P., Pum, D., Sara, M., Stetter, K. O. & Sleytr, U. B. Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J. Bacteriol. 166, 1046–1054 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wildhaber, I. & Baumeister, W. The cell envelope of Thermoproteus tenax: 3-Dimensional structure of the surface-layer and its role in shape maintenance. EMBO J. 6, 1475–1480 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Haeuptle, M. A. & Hennet, T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum. Mutat. 30, 1628–1641 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Weerapana, E. & Imperiali, B. Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16, 91R–101R (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Van Dyke, D. J. et al. Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol. Microbiol. 72, 633–644 (2009).

    Article  CAS  Google Scholar 

  154. Calo, D., Kaminski, L. & Eichler, J. Protein glycosylation in Archaea: sweet and extreme. Glycobiology 20, 1065–1076 (2010). Recent review of N -glycosylation in archaea, summarizing the three glycosylation pathways in archaea that have been studied so far.

    Article  CAS  PubMed  Google Scholar 

  155. Young, N. M. et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Szymanski, C. M. & Wren, B. W. Protein glycosylation in bacterial mucosal pathogens. Nature Rev. Microbiol. 3, 225–237 (2005).

    Article  CAS  Google Scholar 

  157. Bellack, A., Huber, H., Rachel, R., Wanner, G. & Wirth, R. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon adhering to surfaces and forming cell-cell contacts. Int. J. Syst. Evol. Microbiol. 9 Jul 2010 (doi:10.1099/ijs.0.023663-0).

    Article  Google Scholar 

Download references

Acknowledgements

B.H.M. and S.-V.A. were supported by a VIDI grant of the Dutch Science Organization (NWO) and S.-V.A. received additional intramural funds from the Max Planck Society. We want to thank R. Rachel, C. Moissl and G. Wanner for providing us with unpublished picture material. We thank A. Bozarth for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja-Verena Albers.

Supplementary information

Supplementary information S1 (table)

Summary of occurrence of S-layer proteins and cell wall polymers in Archaea. (PDF 206 kb)

Supplementary information S2 (table)

Extracellular sugar polymers in Archaea. (PDF 293 kb)

Related links

Related links

FURTHER INFORMATION

Sonja Alber's homepage

Glossary

Black smoker

A type of hydrothermal vent, which appears as a black chimney-like structure that emits a cloud of black material composed of high levels of sulphur-bearing minerals, or sulphides.

Oblique symmetry

A form of symmetry displayed by S-layer proteins, in which the proteins do not lie at a right angle, or multiples of a right angle, to each other.

Square symmetry

A form of symmetry displayed by S-layer proteins, in which the proteins lie at a right angle, or multiples of a right angle, to each other.

Hexagonal symmetry

A form of symmetry displayed by S-layer proteins, in which the proteins are at an angle of 60° or 120° to each other.

Paracrystalline

A lattice structure that is highly ordered over short distances but lacks long-range ordering at least in one direction.

D-amino acids

All amino acids, except glycine, can exist as either one of two optical isomers, which are mirror images of each other. These forms are called L- or D-amino acids. Only L-amino acids can be recognized in the translation process to be used for the synthesis of proteins. D-amino acids are more rare and can be found, for example, in bacterial peptidoglycan.

Alkaliphilic

Microorganisms that thrive in alkaline environments and require a pH higher than 9 for growth.

Halophilic

Microorganisms that require high concentrations of salt for growth.

Glycocalyx

A cell-surface coat made of glycoproteins and glycolipids.

Thermoadaptation

A mechanism to enable the growth of organisms at high temperatures including adaptation of, for example, proteins, lipids and other cellular components.

Hyperthermophilic

Microorganisms that require high temperatures above 80 °C for optimal growth.

Signal peptide

Part of a preprotein that targets itself to the secretion machinery in the cytoplasmic membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, SV., Meyer, B. The archaeal cell envelope. Nat Rev Microbiol 9, 414–426 (2011). https://doi.org/10.1038/nrmicro2576

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2576

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology