Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular mechanisms that control mistranslation

Key Points

  • Mistranslation can occur at all steps of protein synthesis, so quality control mechanisms exist at each step of translation.

  • Most of our understanding of translation quality control pathways is based on in vitro studies, but recent efforts have increasingly focused on understanding the in vivo causes and effects of mistranslation.

  • High translational accuracy comes at a price. A balance exists in the cell between the speed of protein synthesis and the rate of mistranslation.

  • Rates of mistranslation in vivo are not fixed but vary between organisms and under different environmental conditions.

  • Although mistranslation is often thought to only be detrimental, under some conditions increased levels of mistranslation may be advantageous.

  • Although many advances have been made in recent years, we still do not have a comprehensive understanding of the factors that modulate translational quality control mechanisms or their effect on cellular physiology.

Abstract

Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison of in vitro and in vivo findings. This provides new insights as to why mistranslation can have both positive and negative effects on growth and viability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps in translation quality control.
Figure 2: Environmental conditions that decrease the fitness of cells defective for quality control.

Similar content being viewed by others

References

  1. Johansson, M., Lovmar, M. & Ehrenberg, M. Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 11, 141–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kramer, E. B. & Farabaugh, P. J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13, 87–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blank, A., Gallant, J. A., Burgess, R. R. & Loeb, L. A. An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry 25, 5920–5928 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ling, J., Reynolds, N. & Ibba, M. Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 63, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ibba, M. & Söll, D. Quality control mechanisms during translation. Science 286, 1893–1897 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Dale, T. & Uhlenbeck, O. C. Amino acid specificity in translation. Trends Biochem. Sci. 30, 659–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Hendrickson, T. L. & Schimmel, P. in Translation Mechanisms (eds Lapointe, J. & Brakier-Gingras, L.) 34–64 (Kluwer Academic/Plenum Publishers, New York, 2003).

    Google Scholar 

  9. Martinis, S. A. & Boniecki, M. T. The balance between pre- and post-transfer editing in tRNA synthetases. FEBS Lett. 584, 455–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt, E. & Schimmel, P. Mutational isolation of a sieve for editing in a transfer RNA synthetase. Science 264, 265–267 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Nordin, B. E. & Schimmel, P. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases. Biochemistry 42, 12989–12997 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Gruic-Sovulj, I., Uter, N., Bullock, T. & Perona, J. J. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J. Biol. Chem. 280, 23978–23986 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Splan, K. E., Ignatov, M. E. & Musier-Forsyth, K. Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase. J. Biol. Chem. 283, 7128–7134 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Boniecki, M. T., Vu, M. T., Betha, A. K. & Martinis, S. A. CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase. Proc. Natl Acad. Sci. USA 105, 19223–19228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, B., Yao, P., Tan, M., Eriani, G. & Wang, E. D. tRNA-independent pretransfer editing by class I leucyl-tRNA synthetase. J. Biol. Chem. 284, 3418–3424 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Dulic, M., Cvetesic, N., Perona, J. J. & Gruic-Sovulj, I. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J. Biol. Chem. 285, 23799–23809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Minajigi, A. & Francklyn, C. S. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J. Biol. Chem. 285, 23810–23817 (2010). This paper, together with reference 16, illustrate how tRNA in effect drives misactivated amino acids towards the post-transfer editing pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan, M. et al. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase. J. Biol. Chem. 285, 3235–3244 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Ling, J. et al. Resampling and editing of mischarged tRNA prior to translation elongation. Mol. Cell 33, 654–660 (2009). This article shows that after aminoacyl-tRNAs bind to elongation factors they are not irreversibly committed to protein synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferri-Fioni, M. L. et al. Structure of crystalline D-Tyr-tRNA(Tyr) deacylase. A representative of a new class of tRNA-dependent hydrolases. J. Biol. Chem. 276, 47285–47290 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Ahel, I., Korencic, D., Ibba, M. & Söll, D. Trans-editing of mischarged tRNAs. Proc. Natl Acad. Sci. USA 100, 15422–15427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. An, S. & Musier-Forsyth, K. Trans-editing of Cys-tRNA Pro by Haemophilus influenzae YbaK protein. J. Biol. Chem. 279, 42359–42362 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Soutourina, O., Soutourina, J., Blanquet, S. & Plateau, P. Formation of D-tyrosyl-tRNATyr accounts for the toxicity of D-tyrosine toward Escherichia coli. J. Biol. Chem. 279, 42560–42565 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Sokabe, M., Okada, A., Yao, M., Nakashima, T. & Tanaka, I. Molecular basis of alanine discrimination in editing site. Proc. Natl Acad. Sci. USA 102, 11669–11674 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hussain, T. et al. Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J. 25, 4152–4162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferri-Fioni, M. L. et al. Identification in archaea of a novel D-Tyr-tRNATyr deacylase. J. Biol. Chem. 281, 27575–27585 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wydau, S., Ferri-Fioni, M. L., Blanquet, S. & Plateau, P. GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase. Nucleic Acids Res. 35, 930–938 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, M. et al. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature 462, 808–812 (2009). This study describes the structural basis underlying the need for trans -acting editing factors to maintain fidelity in translation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wydau, S., van der Rest, G., Aubard, C., Plateau, P. & Blanquet, S. Widespread distribution of cell defense against D-aminoacyl-tRNAs. J. Biol. Chem. 284, 14096–14104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaminska, M. et al. Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells. J. Biol. Chem. 284, 13746–13754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kyriacou, S. V. & Deutscher, M. P. An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol. Cell 29, 419–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cannarrozzi, G. et al. A role for codon order in translation dynamics. Cell 141, 355–367 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Fredrick, K. & Ibba, M. How the sequence of a gene can tune its translation. Cell 141, 227–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogle, J. M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V. & Stark, H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ling, J., Yadavalli, S. S. & Ibba, M. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine. RNA 13, 1881–1886 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Effraim, P. R. et al. Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nature Chem. Biol. 5, 947–953 (2009).

    Article  CAS  Google Scholar 

  38. Kruger, M. K., Pedersen, S., Hagervall, T. G. & Sorensen, M. A. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J. Mol. Biol. 284, 621–631 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Sorensen, M. A. et al. Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J. Mol. Biol. 354, 16–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Muramatsu, T. et al. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336, 179–181 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Thompson, R. C. & Stone, P. J. Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl Acad. Sci. USA 74, 198–202 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouadloun, F., Donner, D. & Kurland, C. G. Codon-specific missense errors in vivo. EMBO J. 2, 1351–1356 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dix, D. B. & Thompson, R. C. Codon choice and gene expression: synonymous codons differ in translational accuracy. Proc. Natl Acad. Sci. USA 86, 6888–6892 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gromadski, K. B. & Rodnina, M. V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Schmeing, T. M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zaher, H. S. & Green, R. Quality control by the ribosome following peptide bond formation. Nature 457, 161–166 (2009). This paper describes the discovery of an additional proofreading step on the ribosome that occurs after peptide bond formation.

    Article  CAS  PubMed  Google Scholar 

  48. Zaher, H. S. & Green, R. Kinetic basis for global loss of fidelity arising from mismatches in the P-site codon:anticodon helix. RNA 19 Aug 2010 (doi: 10.1261/rna.2241810).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marquez, V., Wilson, D. N., Tate, W. P., Triana-Alonso, F. & Nierhaus, K. H. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118, 45–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sanders, C. L. & Curran, J. F. Genetic analysis of the E site during RF2 programmed frameshifting. RNA 13, 1483–1491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Devaraj, A., Shoji, S., Holbrook, E. D. & Fredrick, K. A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15, 255–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ling, J., Roy, H. & Ibba, M. Mechanism of tRNA-dependent editing in translational quality control. Proc. Natl Acad. Sci. USA 104, 72–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. An, S. & Musier-Forsyth, K. Cys-tRNA Pro editing by Haemophilus influenzae YbaK via a novel synthetase/YbaK/tRNA ternary complex. J. Biol. Chem. 280, 34465–34472 (2005). The publication describes how a trans -acting factor supplements the specificity of an aaRS

    Article  CAS  PubMed  Google Scholar 

  55. Ruan, B. et al. Quality control despite mistranslation caused by an ambiguous genetic code. Proc. Natl Acad. Sci. USA 105, 16502–16507 (2008). A report that provides evidence for the ability of bacteria to withstand various mistranslation events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reynolds, N. M. et al. Cell-specific differences in the requirements for translation quality control. Proc. Natl Acad. Sci. USA 107, 4063–4068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006). A pivotal paper that describes how mild editing defects can have catastrophic effects in certain cell types.

    Article  CAS  PubMed  Google Scholar 

  58. Korencic, D. et al. A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc. Natl Acad. Sci. USA 101, 10260–10265 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nangle, L. A., De Crécy-Lagard, V., Döring, V. & Schimmel, P. Genetic code ambiguity. Cell viability related to the severity of editing defects in mutant tRNA synthetases. J. Biol. Chem. 277, 45729–45733 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Karkhanis, V. A., Boniecki, M. T., Poruri, K. & Martinis, S. A. A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria. J. Biol. Chem. 281, 33217–33225 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Hinnebusch, A. G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Santos, M. A., Perreau, V. M. & Tuite, M. F. Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J. 15, 5060–5068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bacher, J. M., De Crécy-Lagard, V. & Schimmel, P. R. Inhibited cell growth and protein functional changes from an editing-defective tRNA synthetase. Proc. Natl Acad. Sci. USA 102, 1697–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bacher, J. M. & Schimmel, P. An editing-defective aminoacyl-tRNA synthetase is mutagenic in aging bacteria via the SOS response. Proc. Natl Acad. Sci. USA 104, 1907–1912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wrande, M., Roth, J. R. & Hughes, D. Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc. Natl Acad. Sci. USA 105, 11863–11868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roy, H., Ling, J., Irnov, M. & Ibba, M. Post-transfer editing in vitro and in vivo by the b subunit of phenylalanyl-tRNA synthetase. EMBO J. 23, 4639–4648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lue, S. W. & Kelley, S. O. An aminoacyl-tRNA synthetase with a defunct editing site. Biochemistry 44, 3010–3016 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Roy, H., Ling, J., Alfonzo, J. & Ibba, M. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. J. Biol. Chem. 280, 38186–38192 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Miranda, I., Silva, R. & Santos, M. A. Evolution of the genetic code in yeasts. Yeast 23, 203–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Santos, M. A., Cheesman, C., Costa, V., Moradas-Ferreira, P. & Tuite, M. F. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol. Microbiol. 31, 937–947 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Ruusala, T., Andersson, D., Ehrenberg, M. & Kurland, C. G. Hyper-accurate ribosomes inhibit growth. EMBO J. 3, 2575–2580 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bacher, J. M., Waas, W. F., Metzgar, D., de Crécy-Lagard, V. & Schimmel, P. Genetic code ambiguity confers a selective advantage on Acinetobacter baylyi. J. Bacteriol. 189, 6494–6496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nangle, L. A., Motta, C. M. & Schimmel, P. Global effects of mistranslation from an editing defect in mammalian cells. Chem. Biol. 13, 1091–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009). This article describes the use of a new microarray-based assay to reveal huge increases in tRNA mischarging after exposure to stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl Acad. Sci. USA 93, 15036–15040 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nature Rev. Genet. 10, 715–724 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Ling, J. & Söll, D. Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc. Natl Acad. Sci. USA 107, 4028–4033 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Loftfield, R. B. & Vanderjagt, D. The frequency of errors in protein biosynthesis. Biochem. J. 128, 1353–1356 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pauling, L. Festschrift für Prof. Dr. Arthur Stoll (Birkhauser Verlag, Basel, Switzerland, 1958).

    Google Scholar 

  80. Crick, F. On protein synthesis. SympSocExpBiol 12, 138–163 (1958).

    CAS  Google Scholar 

  81. Baldwin, A. N. & Berg, P. Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J. Biol. Chem. 241, 839–845 (1966).

    CAS  PubMed  Google Scholar 

  82. Giegé, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  83. McClory, S. P., Leisring, J. M., Qin, D. & Fredrick, K. Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection. RNA 16, 1925–1934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ruusala, T., Ehrenberg, M. & Kurland, C. G. Is there proofreading during polypeptide synthesis? EMBO J. 1, 741–745 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Fredrick and T. Bullwinkle for critical reading of the manuscript, and S. Martinis for sharing unpublished results. Work in the authors' laboratories on this topic is supported by the National Science Foundation (MCB 744791 and MCB 744618 to M.I.; MCB 744681 to B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ibba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Michael Ibba's homepage

Glossary

Aminoacyl-tRNA synthetase

An enzyme belonging to a family of enzymes that catalyse the direct aminoacylation of the 3′ end of tRNAs with amino acids. The enzymes are denoted by their three-letter amino acid designation; for example, AlaRS is alanyl-tRNA synthetase.

Aminoacyl-tRNA

tRNA with an amino acid covalently attached to its 3′ end: Ala-tRNA denotes tRNA aminoacylated with Ala and tRNAAla denotes uncharged tRNA specific for Ala.

Cognate

Describes two molecules matched correctly according to the rules of the genetic code.

Editing

The hydrolysis of a non-cognate product either before (pre-transfer) or after (post-transfer) the attachment of the non-cognate amino acid to tRNA.

Trans editing

Editing that occurs after near-cognate product dissociation, catalysed by aaRS or another trans-acting factor.

Deacylate

To remove the amino acid from the 3′ end of an aminoacyl-tRNA.

Wobble

Codon–anticodon interaction involving non-Watson–Crick base pairing that generally occurs at the third codon position.

Cis editing

Editing catalysed by the same aaRS that synthesizes the near-cognate product.

Heat shock response

The cellular response to increased temperature or other stresses that result in the accumulation of unfolded proteins.

Purkinje cell

A post-mitotic neuron in the cerebellum that is responsible for motor coordination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, N., Lazazzera, B. & Ibba, M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol 8, 849–856 (2010). https://doi.org/10.1038/nrmicro2472

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2472

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology