Key Points
-
Fungal aromatic polyketides represent a structurally diverse body of naturally occurring small molecules and are synthesized by the non-reducing (NR) group of iterative polyketide synthases (PKSs).
-
Products often include antibiotics, pigments, melanin precursors and cytotoxins.
-
NR-PKSs diversify their products by selecting alternative acyl starter units, controlling the length of the poly-β-keto chains generated in all aromatic-polyketide synthesis pathways, cyclizing and aromatizing these linear chains in a defined manner and releasing their final products.
-
Aromatic-polyketide biosynthesis in fungi is initiated by the selection of an acyl starter unit and its transfer to an acyl-carrier protein (ACP) domain by an amino-terminal starter unit–ACP transacylase domain. Selection of starter units from the acyl-CoA pool or from other biosynthesis systems begins the process of structural variation.
-
The ketosynthase (KS) domain in fungal NR-PKSs is proposed to control the chain length of the poly-β-keto intermediates. The KS probably stabilizes the reactive intermediates during synthesis.
-
Specific cyclization patterns are the result of product template (PT) domains. PT domains probably evolved from ancient dehydrase domains found in reducing PKSs, but they catalyse the key cyclization and aromatization events in fungal aromatic-polyketide biosynthesis, instead of simple dehydration.
-
Chain termination and subsequent product release is frequently carried out by a thioesterase–Claisen cyclase (TE/CLC). A crystal structure of a representative TE–CLC supports the theory that these domains spatially govern substrate positioning for proper regiospecific product release. When the correct substrate is not presented to the TE–CLC, the domain serves an editing function by removing the incorrect product through hydrolysis.
-
NR-PKS genes are common in filamentous fungi, and many copies of unknown function can be found in a single genome. Small variations in enzyme structure lead to the diverse family of aromatic polyketides.
Abstract
Fungal aromatic polyketides constitute a large family of bioactive natural products and are synthesized by the non-reducing group of iterative polyketide synthases (PKSs). Their diverse structures arise from selective enzymatic modifications of reactive, enzyme-bound poly-β-keto intermediates. How iterative PKSs control starter unit selection, polyketide chain initiation and elongation, intermediate folding and cyclization, selective redox or modification reactions during assembly, and product release are central mechanistic questions underlying iterative catalysis. This Review highlights recent insights into these questions, with a particular focus on the biosynthetic programming of fungal aromatic polyketides, and draws comparisons with the allied biosynthetic processes in bacteria.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Regulation of pseurotin A biosynthesis by GliZ and zinc in Aspergillus fumigatus
Scientific Reports Open Access 10 February 2023
-
Benzoyl ester formation in Aspergillus ustus by hijacking the polyketide acyl intermediates with alcohols
Archives of Microbiology Open Access 22 January 2021
-
Anti-melanogenic activity of Myristica fragrans extract against Aspergillus fumigatus using phenotypic based screening
BMC Complementary Medicine and Therapies Open Access 02 March 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Smith, S. & Tsai, S. C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24, 1041–1072 (2007).
Cronan, J. E. & Thomas, J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol. 459, 395–433 (2009).
Witkowski, A., Joshi, A. K. & Smith, S. Mechanism of the b-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 41, 10877–10887 (2002).
Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).
Hertweck, C., Luzhetskyy, A., Rebets, Y. & Bechthold, A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24, 162–190 (2007).
Zhang, W. & Tang, Y. In vitro analysis of type II polyketide synthase. Methods Enzymol. 459, 367–393 (2009).
Das, A. & Khosla, C. Biosynthesis of aromatic polyketides in bacteria. Acc. Chem. Res. 42, 631–639 (2009).
Austin, M. B. & Noel, J. P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).
Austin, M. B. et al. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J. Biol. Chem. 279, 45162–45174 (2004).
Funa, N., Awakawa, T. & Horinouchi, S. Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. J. Biol. Chem. 282, 14476–14481 (2007).
Fujii, I. Heterologous expression systems for polyketide synthases. Nat. Prod. Rep. 26, 155–169 (2009).
Weissman, K. J. Introduction to polyketide biosynthesis. Methods Enzymol. 459, 3–16 (2009).
Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003).
Muller, R. Don't classify polyketide synthases. Chem. Biol. 11, 4–6 (2004).
Bingle, L. E., Simpson, T. J. & Lazarus, C. M. Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet. Biol. 26, 209–223 (1999).
Nicholson, T. P. et al. Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem. Biol. 8, 157–178 (2001).
Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).
Cox, R. J. & Simpson, T. J. Fungal type I polyketide synthases. Methods Enzymol. 459, 49–78 (2009).
Klenow, H. & Henningsen, I. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc. Natl Acad. Sci. USA 65, 168–175 (1970).
Tsukamoto, Y., Wong, H., Mattick, J. S. & Wakil, S. J. The architecture of the animal fatty acid synthetase complex. IV. Mapping of active centers and model for the mechanism of action. J. Biol. Chem. 258, 15312–15322 (1983).
Plate, C. A., Joshi, V. C. & Wakil, S. J. Studies on the mechanism of fatty acid synthesis. XXIV. The acetyl- and malonyltransacylase activities of pigeon liver fatty acid synthetase. J. Biol. Chem. 245, 2868–2875 (1970).
Udwary, D. W., Merski, M. & Townsend, C. A. A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase. J. Mol. Biol. 323, 585–598 (2002).
Crawford, J. M., Dancy, B. C. R., Hill, E. A., Udwary, D. W. & Townsend, C. A. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc. Natl Acad. Sci. USA 103, 16728–16733 (2006). The first article to show the enzymatic basis for starter unit initiation in fungal aromatic PKSs.
Crawford, J. M., Vagstad, A. L., Ehrlich, K. C. & Townsend, C. A. Starter unit specificity directs genome mining of polyketide synthase pathways in fungi. Bioorg. Chem. 36, 16–22 (2008).
Crawford, J. M., Vagstad, A. L., Whitworth, K. P., Ehrlich, K. C. & Townsend, C. A. Synthetic strategy of nonreducing iterative polyketide synthases and the origin of the classical “Starter-Unit Effect”. Chembiochem 9, 1019–1023 (2008).
Crawford, J. M., Vagstad, A. L., Ehrlich, K. C., Udwary, D. W. & Townsend, C. A. Acyl-carrier protein-phosphopantetheinyltransferase partnerships in fungal fatty acid synthases. Chembiochem 9, 1559–1563 (2008).
Crawford, J. M. et al. Deconstruction of iterative multidomain polyketide synthase function. Science 320, 243–246 (2008). A paper describing the dissection and enzymatic reconstitution of an iterative PKS to define the domain activities and provide the first direct experimental evidence for hypothetical poly-β-keto intermediates.
Crawford, J. M. et al. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 461, 1139–1143 (2009). The atomic-level structures of the first PT domain reveal how poly-β-keto intermediates are folded and cyclized in fungi.
Korman, T. P. et al. Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis. Proc. Natl Acad. Sci. USA 107, 6246–6251 (2010). The first crystal structure of a Claisen cyclase-type thioesterase provides a model for C–C bond cyclization in polyketide chain termination.
Ma, Y. et al. Catalytic relationships between type I and type II iterative polyketide synthases: the Aspergillus parasiticus norsolorinic acid synthase. Chembiochem 7, 1951–1958 (2006).
Ma, S. M. & Tang, Y. Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB. FEBS J. 274, 2854–2864 (2007).
Zhang, W., Li, Y. & Tang, Y. Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 20683–20688 (2008). This article describes a heterologous expression system that uses engineered protein linkers and was developed in E. coli to produce new polyketide derivatives from fungal and bacterial enzyme components.
Birch, A. J., Massy-Westropp, R. A. & Moye, C. J. Studies in relation to biosynthesis. VII. 2-hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Aus. J. Chem. 8, 539–544 (1955).
Birch, A. J. Polyketide metabolism. Annu. Rev. Plant Physiol. 19, 321–332 (1968).
Turner, W. B. Fungal Metabolites (Academic Press New York, 1971).
Simpson, T. J. Applications of multinuclear NMR to structural and biosynthetic studies of polyketide microbial metabolites. Chem. Soc. Rev. 16, 123–160 (1987).
Townsend, C. & Minto, R. in Comprehensive Natural Products Chemistry Vol. 1 (eds Meth-Cohn, O., Barton, D. & Nakanishi, K.) 443–471 (Elsevier, Oxford, UK, 1999).
Yu, J. et al. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70, 1253–1262 (2004).
Yabe, K. & Nakajima, H. Enzyme reactions and genes in aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 64, 745–755 (2004).
Chang, P. K., Cary, J. W., Yu, J., Bhatnagar, D. & Cleveland, T. E. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol. Gen. Genet. 248, 270–277 (1995).
Watanabe, C. M., Wilson, D., Linz, J. E. & Townsend, C. A. Demonstration of the catalytic roles and evidence for the physical association of type I fatty acid synthases and a polyketide synthase in the biosynthesis of aflatoxin B1. Chem. Biol. 3, 463–469 (1996).
Watanabe, C. & Townsend, C. Initial characterization of a type 1 fatty acid synthase and polyketide synthase multienzyme complex NorS in the biosynthesis of aflatoxin B1 . Chem. Biol. 9, 981–988 (2002).
Townsend, C. A., Christensen, S. & Trautwein, K. Hexanoate as a starter unit in polyketide biosynthesis. J. Am. Chem. Soc. 106, 3868–3869 (1984).
McKeown, D. S. J., McNicholas, C., Simpson, T. J. & Willett, N. J. Biosynthesis of norsolorinic acid and averufin: substrate specificity of norsolorinic acid synthase. Chem. Commun. (Camb.) 1996, 301–302 (1996).
Brobst, S. W. & Townsend, C. A. The potential role of fatty acid initiation in the biosynthesis of the fungal aromatic polyketide aflatoxin B1 . Can. J. Chem. 72, 200–207 (1994).
Brown, D. W., Adams, T. H. & Keller, N. P. Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. Proc. Natl Acad. Sci. USA 93, 14873–14877 (1996).
Hitchman, T. et al. Hexanoate synthase, a specialized type I fatty acid synthase in aflatoxin B1 biosynthesis. Bioorg. Chem. 29, 293–307 (2001).
Ehrlich, K. C., Li, P., Scharfenstein, L. & Chang, P. K. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 76, 3374–3377 (2010).
Hussain, S. P., Schwank, J., Staib, F., Wang, X. W. & Harris, C. C. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26, 2166–2176 (2007).
Linnemannstons, P. et al. The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet. Biol. 37, 134–148 (2002).
Ma, S. M. et al. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J. Am. Chem. Soc. 129, 10642–10643 (2007).
Ma, S. M. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326, 589–592 (2009). The biochemical determination of PKS gate keeper functions for auxiliary enzymes.
Zhou, H. et al. Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis. J. Am. Chem. Soc. 132, 4530–4531 (2010).
Gaffoor, I. & Trail, F. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 72, 1793–1799 (2006).
Zhou, H., Zhan, J., Watanabe, K., Xie, X. & Tang, Y. A polyketide macrolactone synthase from the filamentous fungus Gibberella zeae. Proc. Natl Acad. Sci. USA 105, 6249–6254 (2008).
Reeves, C. D., Hu, Z., Reid, R. & Kealey, J. T. Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Appl. Environ. Microbiol. 74, 5121–5129 (2008).
Wang, S. et al. Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem. Biol. 15, 1328–1338 (2008).
Wattana-amorn, P. et al. Solution structure of an acyl carrier protein domain from a fungal type I polyketide synthase. Biochemistry 49, 2186–2193 (2010).
Keatinge-Clay, A. T., Maltby, D. A., Medzihradszky, K. F., Khosla, C. & Stroud, R. M. An antibiotic factory caught in action. Nature Struct. Mol. Biol. 11, 888–893 (2004).
Li, Y., Xu, W. & Tang, Y. Classification, prediction and verification of the regioselectivity of fungal polyketide synthase product template domains. J. Biol. Chem. 285, 22764–22773 (2010). A phylogenetic approach to predicting polyketide cyclization in unknown NR-PKSs.
Ma, S. M. et al. Redirecting the cyclization steps of fungal polyketide synthase. J. Am. Chem. Soc. 130, 38–39 (2008). The first biochemical demonstration of bacterial enzymes intercepting fungal poly-β-keto intermediates and carrying out regiospecific reactions.
Bodner, M. J., Phelan, R. M., Freeman, M. F., Li, R. & Townsend, C. A. Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics. J. Am. Chem. Soc. 132, 12–13 (2010).
Fischbach, M. A. & Clardy, J. One pathway, many products. Nature Chem. Biol. 3, 353–355 (2007).
Thomas, R. A biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketides. Chembiochem 2, 612–627 (2001).
Zhou, H., Li, Y. & Tang, Y. Cyclization of aromatic polyketides from bacteria and fungi. Nat. Prod. Rep. 27, 839–868 (2010).
Bringmann, G., Gulder, T. A., Hamm, A., Goodfellow, M. & Fiedler, H. P. Multiple convergence in polyketide biosynthesis: a third folding mode to the anthraquinone chrysophanol. Chem. Commun. (Camb.) 2009, 6810–6812 (2009).
Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008). The atomic-level structures of the mammalian FAS, a close relative of fungal PKSs.
Dillon, S. C. & Bateman, A. The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinformatics 5, 109 (2004).
Leesong, M., Henderson, B. S., Gillig, J. R., Schwab, J. M. & Smith, J. L. Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure 4, 253–264 (1996).
Keatinge-Clay, A. Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol. 384, 941–953 (2008).
Koski, K. M., Haapalainen, A. M., Hiltunen, J. K. & Glumoff, T. Crystal structure of 2-enoyl-CoA hydratase 2 from human peroxisomal multifunctional enzyme type 2. J. Mol. Biol. 345, 1157–1169 (2005).
Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C. & Turgeon, B. G. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl Acad. Sci. USA 100, 15670–15675 (2003).
Mills, S. G. & Beak, P. Solvent effects on keto-enol equilibria: tests of quantitative models. J. Org. Chem. 50, 1216–1224 (1985).
Hibbert, F. & Emsley, P. Hydrogen bonding and chemical reactivity. Adv. Phys. Org. Chem. 26, 255–379 (1991).
Ames, B. D. et al. Crystal structure and functional analysis of tetracenomycin ARO/CYC: implications for cyclization specificity of aromatic polyketides. Proc. Natl Acad. Sci. USA 105, 5349–5354 (2008).
Iyer, L. M., Koonin, E. V. & Aravind, L. Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43, 134–144 (2001).
Cox, R. J. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 5, 2010–2026 (2007).
Szewczyk, E. et al. Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl. Environ. Microbiol. 74, 7607–7612 (2008).
Chooi, Y. H., Cacho, R. & Tang, Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem. Biol. 17, 483–494 (2010).
Du, L. & Lou, L. PKS and NRPS release mechanisms. Nat. Prod. Rep. 27, 255–278 (2010).
Watanabe, A. et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett. 40, 91–94 (1999).
Watanabe, A. et al. Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett. 39, 7733–7736 (1998).
Fujii, I., Watanabe, A., Sankawa, U. & Ebizuka, Y. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem. Biol. 8, 189–197 (2001). The first biochemical description of a Claisen cyclase activity for NR-PKS TE domains.
Watanabe, A. & Ebizuka, Y. Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases. Chem. Biol. 11, 1101–1106 (2004).
Tsai, H. F. et al. Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J. Biol. Chem. 276, 29292–29298 (2001).
Pihet, M. et al. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol. 9, 177 (2009).
Langfelder, K., Streibel, M., Jahn, B., Haase, G. & Brakhage, A. A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38, 143–158 (2003).
Liu, G. Y. & Nizet, V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 17, 406–413 (2009).
Fujii, I. et al. Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci. Biotechnol. Biochem. 63, 1445–1452 (1999).
Fujii, I. et al. Enzymatic synthesis of 1,3,6,8-tetrahydroxynaphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthase PKS1. Biochemistry 39, 8853–8858 (2000).
Bardshiri, E. & Simpson, T. J. 13C and 2H labelling studies on the biosynthesis of scytalone in Phialaphora lagerbergii. Tetrahedron 39, 3539–3542 (1983).
Wheeler, M. H. et al. New biosynthetic step in the melanin pathway of Wangiella (Exophiala) dermatitidis: evidence for 2-acetyl-1,3,6,8-tetrahydroxynaphthalene as a novel precursor. Eukaryot. Cell 7, 1699–1711 (2008).
Fujii, I. Functional analysis of fungal polyketide biosynthesis genes. J. Antibiot. 63, 207–218 (2010).
Nardini, M. & Dijkstra, B. W. a/b hydrolase fold enzymes: the family keeps growing. Curr. Opin. Struct. Biol. 9, 732–737 (1999).
Carter, P. & Wells, J. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988).
Koglin, A. et al. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature 454, 907–911 (2008).
Frueh, D. P. et al. Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454, 903–906 (2008).
Tran, L., Tosin, M., Spencer, J. B., Leadlay, P. F. & Weissman, K. J. Covalent linkage mediates communication between ACP and TE domains in modular polyketide synthases. Chembiochem 9, 905–915 (2008).
Kennedy, J. et al. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368–1372 (1999).
Belecki, K., Crawford, J. M. & Townsend, C. A. Production of octaketide polyenes by the calicheamicin polyketide synthase CalE8: implications for the biosynthesis of enediyne core structures. J. Am. Chem. Soc. 131, 12564–12566 (2009).
Keller, N. P., Turner, G. & Bennett, J. W. Fungal secondary metabolism — from biochemistry to genomics. Nature Rev. Microbiol. 3, 937–947 (2005).
Machida, M. et al. Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161 (2005).
Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).
Galagan, J. E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115 (2005).
Hoffmeister, D. & Keller, N. P. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24, 393–416 (2007).
Schumann, J. & Hertweck, C. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J. Biotechnol. 124, 690–703 (2006).
Chiang, Y. M., Lee, K. H., Sanchez, J. F., Keller, N. P. & Wang, C. C. Unlocking fungal cryptic natural products. Nat. Prod. Commun. 4, 1505–1510 (2009).
Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).
Acknowledgements
Our work on fungal aromatic-polyketide biosynthesis is supported by the US National Institutes of Health (grant ES001670 to C.A.T.). J.M.C. is a Damon Runyon fellow supported by the Damon Runyon Cancer Research Foundation (grant DRG-2002-09).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Homologated
-
Of a carbon chain: elongated by the repeated addition of a common unit.
- Claisen condensation
-
A C–C bond-forming reaction between two esters.
- Non-ribosomal peptide synthetase
-
A large modular enzyme that produces a broad range of peptide-based bioactive secondary metabolites.
- Regioselective
-
Specific for only one structural isomer over other possible forms.
- Directed evolution
-
Accelerated evolution and natural selection in the laboratory to achieve modified enzyme properties.
- Macrolactonization
-
The act of cyclizing to a macrocycle by formation of an ester (lactone).
- Macrolactamization
-
The act of cyclizing to a macrocycle by formation of an amide (lactam).
- Retro-Claisen reaction
-
C–C bond cleavage via the reverse of the Claisen reaction.
Rights and permissions
About this article
Cite this article
Crawford, J., Townsend, C. New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol 8, 879–889 (2010). https://doi.org/10.1038/nrmicro2465
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2465
This article is cited by
-
Regulation of pseurotin A biosynthesis by GliZ and zinc in Aspergillus fumigatus
Scientific Reports (2023)
-
Integrated Bioinformatics Analysis to Study Gallic Acid-Mediated Inhibition of Polyketide Synthase A from Aflatoxin Biosynthesis Pathway of Aspergillus flavus
Chemistry Africa (2023)
-
Benzoyl ester formation in Aspergillus ustus by hijacking the polyketide acyl intermediates with alcohols
Archives of Microbiology (2021)
-
A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum
BMC Genomics (2020)
-
Anti-melanogenic activity of Myristica fragrans extract against Aspergillus fumigatus using phenotypic based screening
BMC Complementary Medicine and Therapies (2020)