Key Points
-
Advances in sequencing technologies have enabled the detailed characterization of microbial genomes and environmental metagenomes.
-
These genomes have been the basis for the reconstruction of detailed metabolic networks and models for several microorganisms.
-
Geobacter spp., with their unique ability for extracellular electron transfer, are examples of such organisms and have important applications in bioremediation and microbial fuel cells.
-
In addition to helping to derive an in-depth understanding of the physiology and metabolism of Geobacter spp., genome-scale modelling was valuable in helping to describe microbial ecology and, in particular, the competition of these species with other Fe III reducers.
-
Integration of the recently developed automated pipeline for metabolic modelling with physiology experiments will allow researchers to use the modelling approaches described here for the characterization of other environmentally relevant microorganisms.
Abstract
There is a wide diversity of unexplored metabolism encoded in the genomes of microorganisms that have an important environmental role. Genome-scale metabolic modelling enables the individual reactions that are encoded in annotated genomes to be organized into a coherent whole, which can then be used to predict metabolic fluxes that will optimize cell function under a range of conditions. In this Review, we summarize a series of studies in which genome-scale metabolic modelling of Geobacter spp. has resulted in an in-depth understanding of their central metabolism and ecology. A similar iterative modelling and experimental approach could accelerate elucidation of the physiology and ecology of other microorganisms inhabiting a diversity of environments, and could guide optimization of the practical applications of these species.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment
Scientific Reports Open Access 27 March 2020
-
Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12
Scientific Reports Open Access 09 August 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







Change history
05 January 2011
In the original article, the Acknowledgements section was omitted; this section has now been included: Acknowledgements: We acknowledge the US Department of Energy's Genomic Science Program (cooperative agreement DE-FC02-02ER63446) and Subsurface Biogeochemical Research Program (grant DE-FG02-07ER64367) for funding, and C. O'Connell for help with the illustrations. We apologize for this omission.
References
Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. & Palsson, B. O. Reconstruction of biochemical networks in microorganisms. Nature Rev. Microbiol. 7, 129–143 (2009).
Oberhardt, M. A., Palsson, B. O. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).
Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protoc. 5, 93–121 (2010). This paper provides a comprehensive 96-step protocol for reconstructing a metabolic network based on genome sequence and physiology, followed by evaluation of the network through the use of constraint-based modelling.
Reed, J. L., Famili, I., Thiele, I. & Palsson, B. O. Towards multidimensional genome annotation. Nature Rev. Genet. 7, 130–141 (2006).
Palsson, B. in Systems Biology: Properties of Reconstructed Networks (Cambridge Univ. Press, New York, 2006).
Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).
Joyce, A. R. & Palsson, B. O. Toward whole cell modeling and simulation: comprehensive functional genomics through the constraint-based approach. Prog. Drug Res. 64, 265–309 (2007).
Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nature Biotech. 28, 245–248 (2010).
Mo, M. L. & Palsson, B. O. Understanding human metabolic physiology: a genome-to-systems approach Trends Biotechnol. 27, 37–44 (2009).
Duarte, N. D. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. 104, 1777–1782 (2007).
Feist, A. M. & Palsson, B. O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotech. 26, 659–667 (2008).
Herrgard, M. J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotech. 26, 1155–1160 (2008).
Oh, Y. K., Palsson, B. O., Park, S. M., Schilling, C. H. & Mahadevan, R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol. Chem. 282, 28791–28799 (2007).
Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002).
Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).
Lovley, D. R., Holmes, D. E. & Nevin, K. P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49, 219–286 (2004). A detailed introduction to the physiology and ecology of Geobacter spp. as well as other metal reducers.
Lovley, D. R., Stolz, J. F., Nord., G. L. & Phillips, E. J. P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987).
Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy-metabolism - organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).
Lovley, D. R. et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336–344 (1993).
Lovley, D. R. et al. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–300 (1989).
Lovley, D. R. & Lonergan, D. J. Anaerobic oxidation of toluene, phenol, and para-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56, 1858–1864 (1990).
Sung, Y. et al. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium Appl. Environ. Microbiol. 72, 2775–2782 (2006).
Nevin, K. P. et al. Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates Int. J. Syst. Evol. Microbiol. 55, 1667–1674 (2005).
Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa, E. R. Microbial reduction of uranium. Nature 350, 413–416 (1991).
Ortiz-Bernad, I., Anderson, R. T., Vrionis, H. A. & Lovley, D. R. Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl. Environ. Microbiol. 70, 3091–3095 (2004).
Lovley, D. R., Coates, J. D., Blunt Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).
Lovley, D. R. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47, 263–290 (1993).
Anderson, R. T. et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69, 5884–5891 (2003).
N'Guessan, A. L., Vrionis, H. A., Resch, C. T., Long, P. E. & Lovley, D. R. Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. Environ. Sci. Technol. 42, 2999–3004 (2008).
Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D. & Lovley, D. R. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65, 3056–3063 (1999).
Roling, W. F. M., van Breukelen, B. M., Braster, M., Lin, B. & van Verseveld, H. W. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67, 4619–4629 (2001).
Botton, S., van Harmelen, M., Braster, M., Parsons, J. R. & Roling, W. F. M. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiol. Ecol. 62, 118–130 (2007).
Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370, 128–131 (1994).
Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 62, 288–291 (1996).
Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002). The first study to describe microorganisms that are capable of direct extracellular electron transfer to electrodes.
Jung, S. & Regan, J. M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol. 77, 393–402 (2007).
Lee, H. S., Parameswaran, P., Kato-Marcus, A., Torres, C. I. & Rittmann, B. E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 42, 1501–1510 (2008).
Liu, Y., Harnisch, F., Fricke, K., Sietmann, R. & Schroder, U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 24, 1012–1017 (2008).
Nevin, K. P. et al. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 10, 2505–2514 (2008).
Yi, H. et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 24, 3498–3503 (2009).
Gregory, K. B., Bond, D. R. & Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596–604 (2004).
Gregory, K. B. & Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943–8947 (2005).
Strycharz, S. M. et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74, 5943–5947 (2008).
Childers, S. E., Ciufo, S. & Lovley, D. R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767–769 (2002).
Lin, W. C., Coppi, M. V. & Lovley, D. R. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl. Environ. Microbiol. 70, 2525–2528 (2004).
Methe, B. A. et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969 (2003).
Mahadevan, R. et al. Characterization of Metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006). This group constructed the initial genome-scale metabolic model of G. sulfurreducens that elucidated the role of global proton balance in the energetics of extracellular electron transfer.
Lovley, D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259–287 (1991).
Tang, Y. J. et al. Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Appl. Environ. Microbiol. 73, 3859–3864 (2007).
Risso, C., Methe, B. A., Elifantz, H., Holmes, D. E. & Lovley, D. R. Highly conserved genes in Geobacter species with expression patterns indicative of acetate limitation. Microbiology 154, 2589–2599 (2008).
Elifantz, H. et al. Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations. FEMS Microbiol. Ecol. 73, 441–449 (2010).
Segura, D., Mahadevan, R., Juarez, K. & Lovley, D. R. Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLoS Comput. Biol. 4, e36 (2008).
Izallalen, M. et al. Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng. 10, 267–275 (2008).
Butler, J. E. et al. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8, 180 (2007).
Sun, J et al. Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Syst. Biol. 3, 15 (2009).
Cronan, J. E. & Laporte, D. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ASM Press, Washington, D. C., 1996).
Risso, C., Van Dien, S. J., Orloff, A., Lovley, D. R. & Coppi, M. V. Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. J. Bacteriol. 190, 2266–2274 (2008).
Mahadevan, R. & Palsson, B. O. Properties of metabolic networks: structure versus function. Biophys. J. 88, L07–L09 (2005).
Mahadevan, R et al. Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis. Omics 12, 33–59 (2008).
Garg, S., Yang, L. & Mahadevan, R. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling. BMC Res. Notes 3, 125 (2010).
Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z. N. & Barabasi, A. L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004).
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).
Alon, U. in An Introduction to Systems Biology (Taylor & Francis Group, Boca Raton, 2007).
Edwards, J. S. & Palsson, B. O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 5528–5533 (2000).
Papp, B., Pal, C. & Hurst, L. D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).
Mahadevan, R. & Lovley, D. R. The degree of redundancy in metabolic genes is linked to mode of metabolism. Biophys. J. 94, 1216–1220 (2008).
Reguera, G et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).
Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006).
Lovley, D. R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497–508 (2006).
Esteve-Nunez, A., Sosnik, J., Visconti, P. & Lovley, D. R. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ. Microbiol. 10, 497–505 (2008).
Leang, C., Qian, X., Mester, T. & Lovley, D. R. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl. Environ. Microbiol. 76, 4080–4084 (2010).
Nevin, K. P. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4, e5628 (2009).
Inoue, K. et al. Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl. Environ. Microbiol. 76, 3999–4007 (2010).
Esteve-Nunez, A., Rothermich, A., Sharma, M. & Lovley, D. R. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ. Microbiol. 7, 641–648 (2005).
Srinivasan, K. & Mahadevan, R. Characterization of proton production and consumption associated with microbial metabolism. BMC Biotechnol. 10, 2 (2010).
Lovley, D. R. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6, 225–231 (2008).
Nevin, K. P. & Lovley, D. R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66, 2248–2251 (2000).
Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).
Richter, H. et al. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24, 4376–4379 (2008).
Nevin, K. P. & Lovley, D. R. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68, 2294–2299 (2002).
Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).
Bond, D. R. & Lovley, D. R. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71, 2186–2189 (2005).
Newman, D. K. & Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 405, 94–97 (2000).
Lovley, D. R. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19, 564–571 (2008).
Burgard, A. P., Pharkya, P. & Maranas, C. D. OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).
Fong, S. S. et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005).
Holmes, D. E., Finneran, K. T., O'Neil, R. A. & Lovley, D. R. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium- contaminated aquifer sediments. Appl. Environ. Microbiol. 68, 2300–2306 (2002).
Holmes, D. E. et al. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J. 1, 663–677 (2007).
Mouser, P. J. et al. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ. Sci. Technol. 43, 4386–4392 (2009).
Risso, C. et al. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics 10, 447 (2009).
Zhuang, K. et al. D. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 29 Jul 2010 (doi: 10.1038/ismej.2010.117). The first genome-scale dynamic multispecies model to accurately predict the outcome of competition among Fe III reducers under varying acetate and ammonium availabilities.
Methe, B. A., Webster, J., Nevin, K. P. & Lovley, D. R. DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71, 2530–2538 (2005).
Steefel, C. I., DePaolo, D. J. & Lichtner, P. C. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005).
Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274–286 (2009).
Zhao, J., Fang, Y., Scheibe, T. D., Lovley, D. R. & Mahadevan, R. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. J. Contam. Hydrol. 112, 30–44 (2010).
Fennell, D. E., Carroll, A. B., Gossett, J. M. & Zinder, S. H. Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ. Sci. Technol. 35, 1830–1839 (2001).
Lee, P. K., Macbeth, T. W., Sorenson, K. S. Jr, Deeb, R. A. & Alvarez-Cohen, L. Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Appl. Environ. Microbiol. 74, 2728–2739 (2008).
Griffin, B. M., Tiedje, J. M. & Loffler, F. E. Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ. Sci. Technol. 38, 4300–4303 (2004).
Major, D. W. et al. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ. Sci. Technol. 36, 5106–5116 (2002).
Islam, A., Edwards, E. A. & Mahadevan, R. Characterizing the metabolism of Dehalococcoides with a constraint-based model. PLoS Comput. Biol. 6, e1000887 (2010).
Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotech. 28, 977–982 (2010). This article details an automated, web-based pipeline for building genome-scale models. The pipeline was used to develop 130 models of taxonomically diverse bacteria.
Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).
Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
Ishoey, T., Woyke, T., Stepanauskas, R., Novotny, M. & Lasken, R. S. Genomic sequencing of single microbial cells from environmental samples. Curr. Opin. Microbiol. 11, 198–204 (2008).
Lasken, R. S. Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem. Soc. Trans. 37, 450–453 (2009).
Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007). The first multispecies model of syntrophic interactions in a microbial community, involving hydrogen transfer between a sulphate-reducing bacterium and a methanogen. Modelling of the central metabolism of the two organisms showed the ability of models to predict the steady-state microbial composition of a community.
Salimi, F., Zhuang, K. & Mahadevan, R. Genome-scale modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 5, 726–738 (2010).
Acknowledgements
We acknowledge the US Department of Energy's Genomic Science Program (cooperative agreement DE-FC02-02ER63446) and Subsurface Biogeochemical Research Program (grant DE-FG02-07ER64367) for funding, and C. O'Connell for help with the illustrations.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Bernhard Ø. Palsson has a financial interest in Genomatica Inc., although the findings reported in this publication do not directly relate to the interests of Genomatica, Inc.
Radhakrishnan Mahadevan and Derek R. Lovely declare no competing financial interests.
Related links
Glossary
- Humic substances
-
The fraction of the dark organic matter that is stable and can serve as electron carriers.
- Anoxic submerged soil
-
Oxygen-depleted sediment.
- Aquifer
-
An underground, water-saturated, permeable sediment.
- Dissimilatory metal reduction
-
An enzymatic reaction in which a metal is reduced but is not assimilated or incorporated into cells for the purposes of biosynthesis during, for example, respiration.
- Tricarboxylic acid cycle
-
The reaction cycle that serves as the primary source of reduced carriers in metabolism.
- ACK–POR pathway
-
The acetate kinase (ACK)–pyuvate oxidoreductase (POR) pathway for the generation of pyruvate from acetate in anaerobes.
- Anapleurotic reaction
-
A reaction that replenishes metabolites that are removed from the tricarboxylic acid cycle.
- Glyoxylate bypass
-
An alternative pathway (instead of the tricarboxylic acid cycle) for the use of acetate through the generation of glyoxalate.
- Metabolite connectivity
-
The number of reactions in which a metabolite participates.
- ATP synthase
-
An enzyme that synthesizes ATP using the electrochemical gradient across the membrane.
- OptKnock
-
A model-based optimization algorithm for metabolic engineering.
Rights and permissions
About this article
Cite this article
Mahadevan, R., Palsson, B. & Lovley, D. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol 9, 39–50 (2011). https://doi.org/10.1038/nrmicro2456
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2456
This article is cited by
-
Reconstructing organisms in silico: genome-scale models and their emerging applications
Nature Reviews Microbiology (2020)
-
Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment
Scientific Reports (2020)
-
Evaluation of mtr cluster expression in Shewanella RCRI7 during uranium removal
Archives of Microbiology (2020)
-
Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite
Science China Life Sciences (2018)
-
Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation
The ISME Journal (2016)