Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Exit from dormancy in microbial organisms

Abstract

Bacteria can exist in metabolically inactive states that allow them to survive conditions that are not conducive for growth. Such dormant cells may sense when conditions have improved and re-initiate growth, lest they be outcompeted by their neighbours. Growing bacteria turn over and release large quantities of their cell walls into the environment. Drawing from recent work on the germination of Bacillus subtilis spores, we propose that many microorganisms exit dormancy in response to cell wall muropeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptidoglycan structure.
Figure 2: Exit from dormancy triggered by growing cells.
Figure 3: Mechanism of translation stimulation by muropeptide-induced phosphorylation of elongation factor G.

Similar content being viewed by others

References

  1. Oliver, J. D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 34, 415–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gilbert, P., Collier, P. J. & Brown, M. R. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob. Agents Chemother. 34, 1865–1868 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Domingue, G.J. Sr & Woody, H. B. Bacterial persistence and expression of disease. Clin. Microbiol. Rev. 10, 320–344 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oliver, J. D. The viable but nonculturable state in bacteria. J. Microbiol. 43, 93–100 (2005).

    PubMed  Google Scholar 

  6. Stephenson, K. & Lewis, R. J. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev. 29, 281–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Barry, C. E. 3rd et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Microbiol. 7, 845–855 (2009).

    Article  CAS  Google Scholar 

  8. Keep, N. H., Ward, J. M., Cohen-Gonsaud, M. & Henderson, B. Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol. 14, 271–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Hoare, A., Timms, P., Bavoil, P. M. & Wilson, D. P. Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence. BMC Microbiol. 8, 5 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roszak, D. B. & Colwell, R. R. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51, 365–379 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bunker, S. T., Bates, T. C. & Oliver, J. D. Effects of temperature on detection of plasmid or chromosomally encoded gfp- and lux-labeled Pseudomonas fluorescens in soil. Environ. Biosafety Res. 3, 83–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Oliver, J. D., Hite, F., McDougald, D., Andon, N. L. & Simpson, L. M. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl. Environ. Microbiol. 61, 2624–2630 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Votyakova, T. V., Kaprelyants, A. S. & Kell, D. B. Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase: the population effect. Appl. Environ. Microbiol. 60, 3284–3291 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaprelyants, A. S. & Kell, D. B. Do bacteria need to communicate with each other for growth? Trends Microbiol. 4, 237–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sunde, E. P., Setlow, P., Hederstedt, L. & Halle, B. The physical state of water in bacterial spores. Proc. Natl Acad. Sci. USA 106, 19334–19339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cowan, A. E. et al. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proc. Natl Acad. Sci. USA 101, 7733–7738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Setlow, P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15, 172–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh, J. et al. Sporulation in mycobacteria. Proc. Natl Acad. Sci. USA 106, 10781–10786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Traag, B. A. et al. Do mycobacteria produce endospores? Proc. Natl Acad. Sci. USA 107, 878–881 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Abdelrahman, Y. M. & Belland, R. J. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29, 949–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 72, 1843–1855 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harper, A., Pogson, C. I., Jones, M. L. & Pearce, J. H. Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect. Immun. 68, 1457–1464 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCaul, T. F. & Williams, J. C. Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J. Bacteriol. 147, 1063–1076 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Omsland, A. et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl Acad. Sci. USA 106, 4430–4434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brorson, O. et al. Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic tigecycline. Proc. Natl Acad. Sci. USA 106, 18656–18661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kana, B. D. et al. The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol. Microbiol. 67, 672–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Downing, K. J. et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect. Immun. 73, 3038–3043 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kana, B. D. & Mizrahi, V. Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol. Med. Microbiol. 58, 39–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Hayes, C. S. & Low, D. A. Signals of growth regulation in bacteria. Curr. Opin. Microbiol. 12, 667–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Apel, D., White, A. P., Grassl, G. A., Finlay, B. B. & Surette, M. G. Long-term survival of Salmonella enterica serovar Typhimurium reveals an infectious state that is underrepresented on laboratory media containing bile salts. Appl. Environ. Microbiol. 75, 4923–4925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faulkner, G. & Garduno, R. A. Ultrastructural analysis of differentiation in Legionella pneumophila. J. Bacteriol. 184, 7025–7041 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steinert, M., Emody, L., Amann, R. & Hacker, J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 63, 2047–2053 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Faulkner, G., Berk, S. G., Garduno, E., Ortiz-Jimenez, M. A. & Garduno, R. A. Passage through Tetrahymena tropicalis triggers a rapid morphological differentiation in Legionella pneumophila. J. Bacteriol. 190, 7728–7738 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukamolova, G. V., Yanopolskaya, N. D., Kell, D. B. & Kaprelyants, A. S. On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73, 237–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R. & Barer, M. R. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73, 169–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Lewis, K. Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  Google Scholar 

  38. Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nature Rev. Microbiol. 4, 295–305 (2006).

    Article  CAS  Google Scholar 

  39. Schumacher, M. A. et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323, 396–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Setlow, P. Spore germination. Curr. Opin. Microbiol. 6, 550–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giel, J. L., Sorg, J. A., Sonenshein, A. L. & Zhu, J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS ONE 5, e8740 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Doyle, R. J., Chaloupka, J. & Vinter, V. Turnover of cell walls in microorganisms. Microbiol. Rev. 52, 554–567 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasegawa, M. et al. Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J. Biol. Chem. 281, 29054–29063 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Nigro, G. et al. Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell. Microbiol. 10, 682–695 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Cloud-Hansen, K. A. et al. Breaching the great wall: peptidoglycan and microbial interactions. Nature Rev. Microbiol. 4, 710–716 (2006).

    Article  CAS  Google Scholar 

  48. Popham, D. L. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59, 426–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Gaidenko, T. A., Kim, T. J. & Price, C. W. The PrpC serine-threonine phosphatase and PrkC kinase have opposing physiological roles in stationary-phase Bacillus subtilis cells. J. Bacteriol. 184, 6109–6114 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Macek, B. et al. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics 7, 299–307 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Chambon, P., Deutscher, M. P. & Kornberg, A. Biochemical studies of bacterial sporulation and germination. X. Ribosomes and nucleic acids of vegetative cells and spores of Bacillus megaterium. J. Biol. Chem. 243, 5110–5116 (1968).

    CAS  PubMed  Google Scholar 

  52. Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 100, 8478–8483 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bettegowda, C. et al. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nature Biotechnol. 24, 1573–1580 (2006).

    Article  CAS  Google Scholar 

  54. Gao, N., Zavialov, A. V., Ehrenberg, M. & Frank, J. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J. Mol. Biol. 374, 1345–1358 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Savelsbergh, A., Rodnina, M. V. & Wintermeyer, W. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15, 772–780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Janosi, L. et al. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 17, 1141–1151 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vila-Sanjurjo, A., Schuwirth, B. S., Hau, C. W. & Cate, J. H. Structural basis for the control of translation initiation during stress. Nature Struct. Mol. Biol. 11, 1054–1059 (2004).

    Article  CAS  Google Scholar 

  58. Agafonov, D. E., Kolb, V. A. & Spirin, A. S. Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep. 2, 399–402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma, M. R. et al. PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J. Biol. Chem. 285, 4006–4014 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Jones, G. & Dyson, P. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J. Bacteriol. 188, 7470–7476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Donat, S. et al. Transcriptome and functional analysis of the eukaryotic-type ser/thr kinase PknB in Staphylococcus aureus. J. Bacteriol. 191, 4056–4069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beltramini, A. M., Mukhopadhyay, C. D. & Pancholi, V. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect. Immun. 77, 1406–1416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Banu, L. D. et al. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect. Immun. 78, 2209–2220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hett, E. C. & Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72, 126–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McCoy, A. J. & Maurelli, A. T. Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol. 14, 70–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Mukamolova, G. V., Kaprelyants, A. S., Young, D. I., Young, M. & Kell, D. B. A bacterial cytokine. Proc. Natl Acad. Sci. USA 95, 8916–8921 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mukamolova, G. V. et al. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol. 46, 611–621 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Mukamolova, G. V. et al. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 59, 84–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Shleeva, M. O. et al. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148, 1581–1591 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Russell-Goldman, E., Xu, J., Wang, X., Chan, J. & Tufariello, J. M. A Mycobacterium tuberculosis Rpf double-knockout strain exhibits profound defects in reactivation from chronic tuberculosis and innate immunity phenotypes. Infect. Immun. 76, 4269–4281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hett, E. C. et al. A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mol. Microbiol. 66, 658–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Hett, E. C., Chao, M. C., Deng, L. L. & Rubin, E. J. A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog. 4, e1000001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shah, I. M. & Dworkin, J. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75, 1232–1245 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Gupta, M., Sajid, A., Arora, G., Tandon, V. & Singh, Y. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J. Biol. Chem. 284, 34723–34734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dasgupta, A., Datta, P., Kundu, M. & Basu, J. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152, 493–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Parikh, A., Verma, S. K., Khan, S., Prakash, B. & Nandicoori, V. K. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J. Mol. Biol. 386, 451–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Molle, V. & Kremer, L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol. 75, 1064–1077 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Pietack, N. et al. In vitro phosphorylation of key metabolic enzymes from Bacillus subtilis: PrkC phosphorylates enzymes from different branches of basic metabolism. J. Mol. Microbiol. Biotechnol. 18, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006).

    Article  CAS  Google Scholar 

  80. Shank, E. A. & Kolter, R. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12, 205–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Roux, A., Payne, S. M. & Gilmore, M. S. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6, 115–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Hoffman, L. R. et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 103, 19890–19895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nichols, D. et al. Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl. Environ. Microbiol. 74, 4889–4897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yim, G., Wang, H. H. & Davies, J. Antibiotics as signalling molecules. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1195–1200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hildebrand, M. et al. bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chem. Biol. 11, 1543–1552 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. McInerney, M. J. et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125, 58–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. D'Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

    Article  CAS  PubMed  Google Scholar 

  91. Leadbetter, J. R. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Velagapudi, R., Hsueh, Y. P., Geunes-Boyer, S., Wright, J. R. & Heitman, J. Spores as infectious propagules of Cryptococcus neoformans. Infect. Immun. 77, 4345–4355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Osherov, N. & May, G. S. The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 199, 153–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Gray, J. V. et al. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joseph-Strauss, D., Zenvirth, D., Simchen, G. & Barkai, N. Spore germination in Saccharomyces cerevisiae: global gene expression patterns and cell cycle landmarks. Genome Biol. 8, R241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coluccio, A. E., Rodriguez, R. K., Kernan, M. J. & Neiman, A. M. The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS ONE 3, e2873 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lamarre, C. et al. Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics 9, 417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kasuga, T. et al. Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Res. 33, 6469–6485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Giles, S. S., Dagenais, T. R., Botts, M. R., Keller, N. P. & Hull, C. M. Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect. Immun. 77, 3491–3500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, H. et al. Distinct patterns of dendritic cell cytokine release stimulated by fungal b-glucans and Toll-like receptor agonists. Infect. Immun. 77, 1774–1781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, X. L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Shuman for comments on the manuscript. Work from our laboratory is supported by NIH GM81368 and by a Senior Scholar Award in Aging from the Ellison Medical Foundation to J.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Dworkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jonathan Dworkin's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dworkin, J., Shah, I. Exit from dormancy in microbial organisms. Nat Rev Microbiol 8, 890–896 (2010). https://doi.org/10.1038/nrmicro2453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing