Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interactions between bacterial pathogens and mitochondrial cell death pathways

Abstract

The modulation of host cell death pathways by bacteria has been recognized as a major pathogenicity mechanism. Among other strategies, bacterial pathogens can hijack the cell death machinery of host cells by influencing the signalling pathways that converge on the mitochondria. In particular, many bacterial proteins have evolved to interact in a highly specific manner with host mitochondria, thereby modulating the decision between cell life and death. In this Review, we explore the intimate interactions between bacterial pathogens and mitochondrial cell death pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apoptotic cell death pathways.
Figure 2: Non-apoptotic cell death pathways.
Figure 3: Bacterial factors targeting mitochondria.
Figure 4: Cell death-modulating signalling pathways converging at the mitochondria.

Similar content being viewed by others

References

  1. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992). First publication describing programmed cell death of human cells (macrophages) in response to bacterial infection.

    Article  CAS  PubMed  Google Scholar 

  2. Muller, A. et al. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J. 18, 339–352 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fan, T. et al. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187, 487–496 (1998). Describes the inhibition of apoptosis in Chlamydia -infected cells. First indication of a block in apoptosis signalling upstream of mitochondria.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fischer, S. F., Schwarz, C., Vier, J. & Hacker, G. Characterization of antiapoptotic activities of Chlamydia pneumoniae in human cells. Infect. Immun. 69, 7121–7129 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rajalingam, K. et al. Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis. Infect. Immun. 69, 7880–7888 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bohme, L. & Rudel, T. Host cell death machinery as a target for bacterial pathogens. Microbes Infect. 11, 1063–1070 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Lucattini, R., Likic, V. A. & Lithgow, T. Bacterial proteins predisposed for targeting to mitochondria. Mol. Biol. Evol. 21, 652–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Golstein, P. & Kroemer, G. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007). Describes mitochondrial cell death.

    Article  CAS  PubMed  Google Scholar 

  11. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Galluzzi, L. et al. To die or not to die: that is the autophagic question. Curr. Mol. Med. 8, 78–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972). In this groundbreaking work, Kerr and colleagues first described the morphological phenotype of apoptosis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804.

  15. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Leist, M. & Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nature Rev. Mol. Cell Biol. 2, 589–598 (2001).

    Article  CAS  Google Scholar 

  18. Scott, F. L. et al. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 24, 645–655 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cullen, S. P. & Martin, S. J. Mechanisms of granule-dependent killing. Cell Death Differ. 15, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  23. Green, D. R. Apoptotic pathways: ten minutes to dead. Cell 121, 671–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Willis, S. N. & Adams, J. M. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617–625 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Huang, D. C. & Strasser, A. BH3-only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  27. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001). Demonstrates a redundant but essential role of BAK and BAX in mitochondrial apoptosis pathways.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xie, Z. & Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nature Cell Biol. 9, 1102–1109 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161–2172 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tsujimoto, Y. & Shimizu, S. Another way to die: autophagic programmed cell death. Cell Death Differ. 12 (Suppl. 2), 1528–1534 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nature Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  Google Scholar 

  33. Khwaja, A. & Tatton, L. Resistance to the cytotoxic effects of tumor necrosis factor a can be overcome by inhibition of a FADD/caspase-dependent signaling pathway. J. Biol. Chem. 274, 36817–36823 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Matsumura, H. et al. Necrotic death pathway in Fas receptor signaling. J. Cell Biol. 151, 1247–1256 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Vercammen, D. et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919–930 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chan, F. K. et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–51621 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112–119 (2005).

    Article  CAS  Google Scholar 

  39. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  40. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143, 1353–1360 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Festjens, N., Vanden Berghe, T. & Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 1757, 1371–1387 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tsujimoto, Y. & Shimizu, S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12, 835–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, Y. S., Morgan, M. J., Choksi, S. & Liu, Z. G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. & Thompson, C. B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Xu, Y., Huang, S., Liu, Z. G. & Han, J. Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J. Biol. Chem. 281, 8788–8795 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Galluzzi, L. & Kroemer, G. Necroptosis: a specialized pathway of programmed necrosis. Cell 135, 1161–1163 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Zhivotovsky, B., Galluzzi, L., Kepp, O. & Kroemer, G. Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ. 16, 1419–1425 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kozjak-Pavlovic, V., Ross, K. & Rudel, T. Import of bacterial pathogenicity factors into mitochondria. Curr. Opin. Microbiol. 11, 9–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006).

    Article  CAS  Google Scholar 

  54. Backert, S. & Meyer, T. F. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr. Opin. Microbiol. 9, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Bolender, N., Sickmann, A., Wagner, R., Meisinger, C. & Pfanner, N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 9, 42–49 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Nougayrede, J. P. & Donnenberg, M. S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111 (2004). Describes targeting of EspF to mitochondria and the effects this has on cell survival.

    Article  CAS  PubMed  Google Scholar 

  57. Papatheodorou, P. et al. The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology. Cell. Microbiol. 8, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Crane, J. K., McNamara, B. P. & Donnenberg, M. S. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol. 3, 197–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Nagai, T., Abe, A. & Sasakawa, C. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280, 2998–3011 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kenny, B. & Jepson, M. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2, 579–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Ma, C. et al. Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell. Microbiol. 8, 1669–1686 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Kenny, B. & Valdivia, R. Host-microbe interactions: bacteria. Curr. Opin. Microbiol. 12, 1–3 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Salama, N. R., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570–10575 (1992).

    CAS  PubMed  Google Scholar 

  65. Nguyen, V. Q., Caprioli, R. M. & Cover, T. L. Carboxy-terminal proteolytic processing of Helicobacter pylori vacuolating toxin. Infect. Immun. 69, 543–546 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ye, D. & Blanke, S. R. Functional complementation reveals the importance of intermolecular monomer interactions for Helicobacter pylori VacA vacuolating activity. Mol. Microbiol. 43, 1243–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Torres, V. J., McClain, M. S. & Cover, T. L. Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). J. Biol. Chem. 279, 2324–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Reyrat, J. M. et al. 3D imaging of the 58 kDa cell binding subunit of the Helicobacter pylori cytotoxin. J. Mol. Biol. 290, 459–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. de Bernard, M. et al. Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect. Immun. 66, 6014–6016 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Galmiche, A. et al. The N terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370 (2000). Provides first evidence for the mitochondrial translocation of the bacterial protein VacA and its pro-apoptotic function in mitochondria.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Yamasaki, E. et al. Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J. Biol. Chem. 281, 11250–11259 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Domanska, G. et al. Helicobacter pylori VacA toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane. PLoS Pathog. 6, e1000878.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Bantel, H. et al. α-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J. Cell Biol. 155, 637–648 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Essmann, F. et al. Staphylococcus aureus α-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death Differ. 10, 1260–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Haslinger, B., Strangfeld, K., Peters, G., Schulze-Osthoff, K. & Sinha, B. Staphylococcus aureus α-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-a and the mitochondrial death pathway. Cell. Microbiol. 5, 729–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Genestier, A. L. et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Invest. 115, 3117–3127 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Braun, J. S. et al. Pneumolysin causes neuronal cell death through mitochondrial damage. Infect. Immun. 75, 4245–4254 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. He, D. et al. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Matarrese, P. et al. Clostridium difficile toxin B causes apoptosis in epithelial cells by thrilling mitochondria. Involvement of ATP-sensitive mitochondrial potassium channels. J. Biol. Chem. 282, 9029–9041 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Petit, P. et al. Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell. Microbiol. 5, 761–771 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Choi, C. H. et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell. Microbiol. 7, 1127–1138 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Muller, A. et al. Targeting of the pro-apoptotic VDAC-like porin (PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. EMBO J. 19, 5332–5343 (2000). First example of bacterial outer membrane protein localizing to mitochondria and inducing cell death.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Massari, P., Ho, Y. & Wetzler, L. M. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc. Natl Acad. Sci. USA 97, 9070–9075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kozjak-Pavlovic, V. et al. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis. PLoS Pathog. 5, e1000629 (2009). Delineates the import route of PorB into mitochondria and its mode of action in mitochondrial damage.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Walther, D. M., Papic, D., Bos, M. P., Tommassen, J. & Rapaport, D. Signals in bacterial b-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc. Natl Acad. Sci. USA 106, 2531–2536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kepp, O. et al. Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection. PLoS Pathog. 5, e1000348 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Kepp, O., Rajalingam, K., Kimmig, S. & Rudel, T. Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO J. 26, 825–834 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Sisko, J. L., Spaeth, K., Kumar, Y. & Valdivia, R. H. Multifunctional analysis of Chlamydia-specific genes in a yeast expression system. Mol. Microbiol. 60, 51–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Niu, H., Kozjak-Pavlovic, V., Rudel, T. & Rikihisa, Y. Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6, e1000774 (2010). The first example of a secreted bacterial protein that targets mitochondria and inhibits apoptosis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J. & Molkentin, J. D. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biol. 9, 550–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Block, A. et al. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell. Microbiol. 12, 318–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  Google Scholar 

  93. Boise, L. H. & Collins, C. M. Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol. 9, 64–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Hernandez, L. D., Pypaert, M., Flavell, R. A. & Galan, J. E. A Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell Biol. 163, 1123–1131 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Fischer, S. F. et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med. 200, 905–916 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Dong, F. et al. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect. Immun. 73, 1861–1864 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Paschen, S. A. et al. Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J. Cell Biol. 182, 117–127 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Pirbhai, M., Dong, F., Zhong, Y., Pan, K. Z. & Zhong, G. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J. Biol. Chem. 281, 31495–31501 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Verbeke, P. et al. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2, e45 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Rajalingam, K. et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS ONE 3, e3102 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Howie, H. L., Shiflett, S. L. & So, M. Extracellular signal-regulated kinase activation by Neisseria gonorrhoeae downregulates epithelial cell proapoptotic proteins Bad and Bim. Infect. Immun. 76, 2715–2721 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Hauck, C. R. & Meyer, T. F. 'Small' talk: Opa proteins as mediators of Neisseria-host-cell communication. Curr. Opin. Microbiol. 6, 43–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Nogueira, C. V. et al. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog. 5, e1000478 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Banga, S. et al. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc. Natl Acad. Sci. USA 104, 5121–5126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berghe, T. V. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17, 922–930 (2009).

    Article  CAS  Google Scholar 

  106. Laguna, R. K., Creasey, E. A., Li, Z., Valtz, N. & Isberg, R. R. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc. Natl Acad. Sci. USA 103, 18745–18750 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carneiro, L. A. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5, 123–136 (2009). Demonstrates mitochondrion-dependent necrotic cell death in epithelial cells as a consequence of Shigella spp. infection. Cell death was potently counterbalanced by a signalling pathway activated by the pathogen early during infection.

    Article  CAS  PubMed  Google Scholar 

  108. Zychlinsky, A. & Sansonetti, P. J. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 5, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Goldmann, O., Sastalla, I., Wos-Oxley, M., Rohde, M. & Medina, E. Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cell. Microbiol. 11, 138–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Porcelli, S. A. & Jacobs, W. R. Jr. Tuberculosis: unsealing the apoptotic envelope. Nature Immunol. 9, 1101–1102 (2008).

    Article  CAS  Google Scholar 

  111. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Schaible, U. E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Med. 9, 1039–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, M., Gan, H. & Remold, H. G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3707–3716 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Enninga, J., Sansonetti, P. & Tournebize, R. Roundtrip explorations of bacterial infection: from single cells to the entire host and back. Trends Microbiol. 15, 483–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Willingham, S. B. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147–159 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci. 1147, 233–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Rajalingam, K. et al. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog. 2, e114 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Paland, N. et al. NF-κB and inhibitor of apoptosis proteins are required for apoptosis resistance of epithelial cells persistently infected with Chlamydophila pneumoniae. Cell. Microbiol. 8, 1643–1655 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Galluzzi for helpful advice during the preparation of the manuscript and L. Ogilvie for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rudel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thomas Rudel's homepage

The caspase substrate database homepage

Glossary

Calreticulin

Ca2+-binding endoplasmic reticulum chaperone that under cell stress conditions can translocate to the cell surface and serve as an 'eat me' signal for dendritic cells.

Calpain

One of a group of Ca2+-activated cytoplasmic proteases that are found in many tissues and that hydrolyse various endogenous proteins.

Granzyme

A secreted serine protease that enters target cells through perforin pores, then cleaves and activates intracellular caspases, leading to apoptosis.

Perforin

A component of cytolytic granules that participates in the permeabilization of plasma membranes, allowing granzymes and other cytotoxic components to enter target cells.

T3SS

A bacterial secretion system that consists of a needle-like apparatus that transports proteins from the bacterial cytoplasm across the bacterial cell envelope directly into the eukaryotic cell cytoplasm.

T4SS

A multiprotein complex that mediates the translocation of macromolecules (proteins, DNA or DNA–protein) across the bacterial cell envelope into the extracellular medium or directly into recipient cells.

T5SS

Include both two-partner secretion systems and autotransporters. Two-partner secretion systems comprise two distinct proteins: a transporter protein and a secreted effector protein. Autotransporters are multidomain proteins that are secreted as precursors across the inner membrane by the Sec machinery. The translocator domain of the protein then inserts into the outer membrane and facilitates surface localization of the passenger domain.

TOM complex

A protein complex that recognizes nucleus-encoded mitochondrial pre-proteins and mediates their translocation across the membrane.

SAM complex

A protein complex that facilitates the integration of imported proteins into the outer mitochondrial membrane.

TIM complex

A protein complex in the inner membrane and intermembrane space of mitochondria that mediates transport of pre-proteins into and across the membrane.

Type IV pilus

An elongated, flexible appendage that extends from the surface of Gram-negative bacterial cells and is used for adhesion and twitching motility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudel, T., Kepp, O. & Kozjak-Pavlovic, V. Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol 8, 693–705 (2010). https://doi.org/10.1038/nrmicro2421

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing