Key Points
-
Swarming motility is operationally defined as multicellular, flagella-mediated surface migration of bacteria. Swarming requires intercellular interactions, surfactant secretion and an increase in flagellar numbers.
-
Swarming motility has often been genetically bred out of laboratory strains and is best observed in natural isolates. In the laboratory, one must take care to standardize swarming conditions. Although the specific conditions that promote swarming are species dependent, swarming generally occurs on nutrient-rich media solidified by agar concentrations of greater than 0.3%.
-
A period of non-motility, or a swarm lag, will manifest when cells are transferred from liquid to a solid medium. The lag is thought to indicate a physiological change in cells to become swarming proficient.
-
Some bacteria become elongated during swarming. It is not clear whether cell elongation is required for or simply co-regulated with swarming in these species. The mechanistic connection between swarming motility and cell elongation is unknown, and many swarming bacteria do not become elongated.
-
Swarming often requires the chemotaxis sensory transduction system for functions that are unrelated to chemotaxis, or directed movement, per se.
-
The mechanism of surface sensing (the bacterial 'sense of touch') is unknown, but swarming motility provides a strong model system for its study. Models have been proposed to explain the bacterial response to surface contact, including sensing resistance to flagellar rotation when impeded by surface contact and sensing perturbations in the Gram-negative outer membrane.
-
The ecology of swarming is unknown, but swarming is often associated with pathogenesis. Swarming bacteria also enjoy enhanced resistance to antibiotics and eukaryotic engulfment as well as gaining enhanced nutrition and a competitive advantage from secreted surfactants.
Abstract
How bacteria regulate, assemble and rotate flagella to swim in liquid media is reasonably well understood. Much less is known about how some bacteria use flagella to move over the tops of solid surfaces in a form of movement called swarming. The focus of bacteriology is changing from planktonic to surface environments, and so interest in swarming motility is on the rise. Here, I review the requirements that define swarming motility in diverse bacterial model systems, including an increase in the number of flagella per cell, the secretion of a surfactant to reduce surface tension and allow spreading, and movement in multicellular groups rather than as individuals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Verstraeten, N. et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16, 496–506 (2008).
Henrichsen, J. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36, 478–503 (1972). This landmark study characterizes the motile behaviour of over 500 bacterial isolates and defines the main types of bacterial movement: swimming, swarming, twitching, gliding and sliding.
Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nature Rev. Microbiol. 6, 466–476 (2008).
Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Biochem. 56, 289–314 (2002).
Mignot, T. The elusive engine in Myxococcus xanthus gliding motility. Cell. Mol. Life Sci. 64, 2733–2745 (2007).
Matsuyama, T. et al. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J. Bacteriol. 174, 1769–1776 (1992).
Kinsinger, R. F., Kearns, D. B., Hale, M. & Fall, R. Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis. J. Bacteriol. 187, 8462–8469 (2005).
Murray, T. S. & Kazmierczak, B. I. Pseudomonas aeruginosa exhibits sliding motiliy in the absence of type IV pili and flagella. J. Bacteriol. 190, 2700–2708 (2008).
Matsuyama, T., Bhasin, A. & Harshey, R. M. Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J. Bacteriol. 177, 987–991 (1995).
Be'er, A. et al. Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J. Bacteriol. 191, 5758–5764 (2009).
Kearns, D. B. & Losick, R. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49, 581–590 (2003). A comprehensive phenotypic and genetic analysis of swarming motility.
Patrick, J. E. & Kearns, D. B. Laboratory strains of Bacillus subtilis do not exhibit swarming motility. J. Bacteriol. 191, 7129–7133 (2009).
Ghelardi, E. et al. Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl. Env. Microbiol. 73, 4089–4093 (2007).
Kim, W. & Surette, M. G. Prevalence of surface swarming behavior in Salmonella. J. Bacteriol. 187, 6580–6583 (2005).
Velicer, G. J., Kroos, L. & Lenski, R. E. Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl Acad. Sci. USA 95, 12376–12380 (1998).
Julkowska, D., Obuchowski, M., Holland, B. I. & Séror, S. J. Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J. Bacteriol. 187, 65–76 (2005).
Young, G. M., Smith, M. J., Minnich, S. A. & Miller, V. L. The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J. Bacteriol. 181, 2823–2833 (1999). Another comprehensive phenotypic and genetic analysis of swarming motility.
Harshey, R. M. & Matsuyama, T. Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl Acad. Sci. USA 91, 8631–8635 (1994).
Jones, H. E. & Park, R. W. A. The influence of medium composition on the growth and swarming of Proteus. J. Gen. Microbiol. 47, 369–378 (1967).
Eberl, L., Molin, S. & Givskov, M. Surface motility of Serratia liquefaciens MG1. J. Bacteriol. 181, 1703–1712 (1999). An excellent data-filled review specific to S. liquefaciens swarming that serves as a template that is generally applicable to many systems.
Tremblay, J. & Déziel, E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J. Basic Microbiol. 48, 509–515 (2008).
Mayfield, C. I. & Inniss, W. E. A rapid, simple method for staining bacterial flagella. Can. J. Microbiol. 23, 1311–1313 (1977).
Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000). The authors devise a simple, rapid and robust means of fluorescently labelling the flagella of Gram-negative bacteria. This work is a great leap forward for the imaging of flagellar dynamics.
Copeland, M. F., Flickinger, S. T., Tuson, H. H. & Weibel, D. B. Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes. Appl. Environ. Microbiol. 76, 1241–1250 (2010). An important first effort towards monitoring flagellar dynamics in a swarm.
Hoeniger, J. F. M. Development of flagella by Proteus mirabilis. J. Gen. Microbiol. 40, 29–42 (1965).
Jones, B. V., Young, R., Mahenthiralingam, E. & Stickler, D. J. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect. Immun. 72, 3941–3950 (2004). An article containing beautiful electron micrographs of P. mirabilis swarms on the surface of a catheter.
Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nature Rev. Microbiol. 6, 455–465 (2008).
Shinoda, S. & Okamoto, K. Formation and function of Vibrio parahaemolyticus lateral flagella. J. Bacteriol. 129, 1266–1271 (1977). The first observation that synthesis of lateral flagella is induced in V. parahaemolyticus by contact with a surface.
Alberti, L. & Harshey, R. M. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J. Bacteriol. 172, 4322–4328 (1990).
Merino, S., Shaw, J. G. & Tomás, J. M. Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol. Lett. 263, 127–135 (2006).
Ulitzur, S. & Kessel, M. Giant flagellar bundles of Vibrio alginolyticus (NCMB 1803). Arch. Mikrobiol. 94, 331–339 (1973).
Schneider, W. R. & Doetsch, R. N. Effect of viscosity on bacterial motility. J. Bacteriol. 117, 696–701 (1974).
Berg, H. C. & Turner, L. Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979).
Atsumi, T. et al. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J. Bacteriol. 178, 5024–5026 (1996).
Zhang, R., Turner, L. & Berg, H. C. The upper surfaces of an Escherichia coli swarm is stationary. Proc. Natl Acad. Sci. USA 107, 288–290 (2010). A simple and fascinating approach to measuring the thickness of the fluid surrounding a swarm, including the unexpected finding that the top surface of the swarm fluid is relatively static.
Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. Dyanmics of bacterial swarming. Biophys. J. 98, 2082–2090 (2010).
Turner, L., Zhang, R., Darnton, N. C. & Berg, H. C. Visualization of flagella during bacterial swarming. J. Bacteriol. 192, 3259–3267 (2010). An important first effort towards monitoring flagellar dynamics in a swarm.
Ragatz, L., Jiang, Z. Y., Bauer, C. & Gest, H. Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum. Arch. Microbiol. 163, 1–6 (1995).
Gavín, R. et al. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol. Microbiol. 43, 383–397 (2002).
Kirov, S. M. et al. Lateral flagella and swarming motility in Aeromonas species. J. Bacteriol. 184, 547–555 (2002).
McCarter, L. L. & Wright, M. E. Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J. Bacteriol. 175, 3361–3371 (1993).
Kim, Y. K. & McCarter, L. L. Analysis of the polar flagellar gene system of V. parahaemolyticus. J. Bacteriol. 182, 3693–3704 (2000).
Doyle, T. B., Hawkins, A. C. & McCarter, L. L. The complex flagellar torque generator of Pseudomonas aeruginosa. J. Bacteriol. 186, 6341–6350 (2004).
Toutain, C. M., Zegans, M. E., & O'Toole, G. A. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J. Bacteriol. 187, 771–777 (2005).
Senesi, S. et al. Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology 148, 1785–1794 (2002).
Lai, H. C., Gygi, D., Fraser, G. M. & Hughes, C. A swarming defective mutant of Proteus mirabilis lacking a putative cation-transporting membrane P-type ATPase. Microbiology 144, 1957–1961 (1998).
Furness, R. B., Fraser, G. M., Hay, N. A. & Hughes, C. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlled cell division and flagellum assembly. J. Bacteriol. 179, 5585–5588 (1997).
Köhler, T., Curty, L. K., Barja, F., Van Delden, C. & Pechère, J.C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182, 5990–5996 (2000).
Rashid, M. H. & Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 97, 4885–4890 (2000).
Hay, N. A., Tipper, D. J., Gygi, D. & Hughes, C. A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J. Bacteriol. 179, 4741–4746 (1997).
Dufour, A., Furness, R. B. & Hughes, C. Novel genes that upregulate the Proteus mirabilis master operon controlling flagellar biogenesis and swarming. Mol. Microbiol. 29, 741–751 (1998).
Kearns, D. B., Chu, F., Rudner, R. & Losick, R. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol. Microbiol. 52, 357–369 (2004).
Calvio, C. et al. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J. Bacteriol. 187, 5356–5366 (2005).
Kearns, D. B. & Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083–3094 (2005).
Wang, Q., Suzuki, A., Mariconda, S., Powollik, S. & Harshey, R. M. Sensing wetness: a new role for the bacterial flagellum. EMBO J. 24, 2034–2042 (2005).
Morgenstein, R. M., Clemmer, K. M. & Rather, P. N. Loss of the waaL O-antigen ligase prevents surface activation of the flagellar gene cascase in Proteus mirabilis. J. Bacteriol. 192, 3213–3221 (2010).
Soo, P. C. et al. Regulation of swarming motility and flhDC Sm expression by RssAB signaling in Serratia marcescens. J. Bacteriol. 190, 2496–2504 (2008).
Belas, R., Schneider, R. & Melch, M. Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J. Bacteriol. 180, 6126–6139 (1998).
Stevenson, L. G. & Rather, P. N. A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J. Bacteriol. 188, 7830–7839 (2006).
Claret, L. & Hughes, C. Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J. Bacteriol. 182, 833–836 (2000).
Morrison, R. B. & Scott, A. Swarming of Proteus — a solution to an old problem. Nature 211, 255–257 (1966). The first detailed description of the rafting phenomenon. The authors raise many questions concerning swarming motility that remain unresolved to this day.
O'Rear, J., Alberti, L. & Harshey, R. M. Mutations that impair swarming motility in Serratia marcescens 274 include but are not limited to those affecting chemotaxis or flagellar function. J. Bacteriol. 174, 6125–6137 (1992).
Girgis, H. S., Liu, Y., Ryu, W. S. & Tavazoie, S. A comprehensive genetic characterization of bacterial motility. PLOS Genet. 3, 154–166 (2007). An exceptionally well-executed re-investigation of the genetic requirements for swimming and swarming motility in E. coli . New swarming genes are identified, characterized and interpreted by epistasis analysis.
Julkowska, D., Obuchowski, M., Holland, B. I. & Séror, S. J. Branched swarming patterns on a synthetic medium by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology 150, 1839–1849 (2004).
Toguchi, A., Siano, M., Burkart, M. & Harshey, R. M. Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J. Bacteriol. 182, 6308–6321 (2000).
Jain, D. K., Collins-Thompson, D. L., Lee, H. & Trevors, J. T. A drop-collapsing test for screening surfactant producing microorganisms. J. Microbiol. Methods 13, 271–279 (1991).
Chen, B. G., Turner, L. & Berg, H. C. The wetting agent required for swarming in Salmonella enterica serovar Typhimurium is not a surfactant. J. Bacteriol. 189, 8750–8753 (2007).
Lindum, P. W. et al. N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility in Serratia liquefaciens MG1. J. Bacteriol. 180, 6384–6388 (1988). A superb analysis of the genetics, regulation and physiology of surfactants and swarming motility.
Peypoux, F., Bonmatin, J. M. & Wallach, J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51, 553–563 (1999).
Arima, K., Kakinuma, A. & Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization, and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31, 488–494 (1968).
Cosmina, P. et al. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol. Microbiol. 8, 821–831 (1993).
Caiazza, N. C., Shanks, R. M. & O'Toole, G. A. Rhamnolipids modulate swarming patterns of Pseudomonas aeruginosa. J. Bacteriol. 187, 7351–7361 (2005).
Ochsner, U. A., Fiechter, A. & Reiser, J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 31, 19787–19795 (1994).
Déziel, E., Lépine, F., Milot, S. & Villemur, R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149, 2005–2013 (2003).
Tremblay, J., Richardson, A.-P., Lepine, F. & Déziel, E. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behavior. Environ. Microbiol. 9, 2622–2630 (2007).
Ochsner, U. A. & Reiser, J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 6424–6428 (1995).
Eberl, L. et al. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens. Mol. Microbiol. 20, 127–136 (1996).
Magnuson, R., Solomon, J. & Grossman, A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207–216 (1994).
Francez-Charlot, A. et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. 49, 823–832 (2003).
Belas, R., Simon, M. & Silverman, M. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol. 167, 210–218 (1986). The authors couple luciferase expression to expression of a lateral flagellar gene and determine that viscosity is an inducer of the swarming state.
Hoeniger, J. F. M. Cellular changes accompanying the swarming of Proteus mirabilis. I. Observation of living cultures. Can. J. Microbiol. 10, 1–9 (1964).
Rauprich, O. et al. Periodic phenomena in Proteus mirabilis swarm colony development. J. Bacteriol. 178, 6525–6538 (1996). A detailed analysis of the macroscopic bull's eye pattern formation during swarming motility in P. mirabilis.
Williams, F. D., Anderson, D. M., Hoffman, P. S., Schwarzhoff, R. H. & Leonard, S. Evidence against the involvement of chemotaxis in swarming Proteus mirabilis. J. Bacteriol. 127, 237–248 (1976).
Chen, R., Guttenplan, S. B., Blair, K. M. & Kearns, D. B. Role of the σD-dependent autolysins in Bacillus subtilis population heterogeneity. J. Bacteriol. 191, 5775–5784 (2009).
Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).
Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).
Hoeniger, J. F. M. Cellular changes accompanying the swarming of Proteus mirabilis. II. Observations of stained organisms. Can. J. Microbiol. 12, 113–123 (1965). This paper documents the filamentous, aseptate, multinucleoid cell type that is associated with P. mirabilis swarming.
Tolker-Nielsen, T. et al. Assessment of flhDC mRNA levels in Serratia liquefaciens swarm cells. J. Bacteriol. 182, 2680–2686 (2000).
Belas, R. & Colwell, R. R. Scanning electron microscope observation of the swarming phenomenon of Vibrio parahaemolyticus. J. Bacteriol. 150, 956–959 (1982).
Ingham, C. J. & Ben Jacob, E. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol. 8, 36 (2008).
Mariconda, S., Wang, Q. & Harshey, R. M. A mechanical role for the chemotaxis system in swarming motility. Mol. Microbiol. 60, 1590–1602 (2006).
Shimada, H. et al. Dependence of local cell density on concentric ring colony formation by bacterial species Bacillus subtilis. J. Physical Soc. Japan 73, 1082–1089 (2004).
Hiramatsu, F. et al. Patterns of expansion produced by a structured cell population of Serratia marscescens in response to different media. Microbes Environ. 20, 120–125 (2005).
Matsuyama, T. et al. Dynamic aspects of the structured cell population in swarming colony of Proteus mirabilis. J. Bacteriol. 182, 385–393 (2000).
Bisset, K. A. & Douglas, C. W. I. A continuous study of morphological phase in the swarm of Proteus. J. Med. Microbiol. 9, 229–231 (1975).
Douglas, C. W. I. & Bisset, K. A. Development of concentric zones in the Proteus swarm colony. J. Med. Microbiol. 9, 497–500 (1976).
Rudner, R., Martsinkevich, O, Leung, W. & Jarvis, E. D. Classification and genetic characterization of pattern forming Bacilli. Mol. Microbiol. 27, 687–703 (1998).
Patrick, J. E. & Kearns, D. B. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol. Microbiol. 70, 1166–1179 (2008).
Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024–1037 (2004).
Adler, J. Chemotaxis in bacteria. Science 153, 708–716 (1966).
Hughes, H. A reconsideration of the swarming of Proteus vulgaris. J. Gen. Microbiol. 17, 49–58 (1957).
Kojima, M., Kubo, R., Yakushi, T., Homma, M. & Kawagishi, I. The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species. Mol. Microbiol. 64, 57–67 (2007).
Allison, C., Lai, H. C., Gygi, D. & Hughes, C. Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol. Microbiol. 8, 53–60 (1993).
Sar, N., McCarter, L., Simon, M. & Silverman, M. Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus. J. Bacteriol. 172, 334–341 (1990).
Ragatz, L., Jiang, Z. Y., Bauer, C. & Gest, H. Phototactic purple bacteria. Nature 370, 104 (1994).
Burkhart, M., Toguchi, A. & Harshey, R. M. The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc. Natl Acad. Sci. USA 95, 2568–2573 (1998). This important work provides genetic and physiological data that separate chemotaxis from swarming motility.
Jiang, Z. Y., Gest, H. & Bauer, C. E. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J. Bacteriol. 179, 5720–5727 (1997).
Berleman, J. E. & Bauer, C. E. A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol. Microbiol. 55, 1390–1402 (2005).
McCarter, L., Hilmen, M. & Silverman, M. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54, 345–351 (1988). The flagellum is implicated as a sensor for surface contact by the demonstration that impeding flagellar rotation (using flagellum-specific antibodies or cells carrying mutations that affect the flagellar filament) induces expression of the lateral-flagella genes.
Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20, 693–699 (1996).
Jaques, S., Kim, Y. K. & McCarter, L. L. Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proc. Natl Acad. Sci. USA 96, 5740–5745 (1999).
Belas, R. & Suvanasuthi, R. The ability of Proteus mirabilis to sense surfaces and regulated virulence gene expression involves FliL, a flagellar basal body protein. J. Bacteriol. 187, 6789–6803 (2005).
Attmannspacher, U., Scharf, B. E. & Harshey, R. M. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol. Microbiol. 68, 328–341 (2008).
Darnton, N. C. & Berg, H. C. Bacterial flagella are firmly anchored. J. Bacteriol. 190, 8223–8224 (2008).
Jones, H. E. & Park, R. W. A. The short forms and long forms of Proteus. J. Gen. Microbiol. 47, 359–367 (1967).
Falkinham, J. O. 3rd & Hoffman, P. S. Unique developmental characteristics of the swarm and short cells of Proteus vulgaris and Proteus mirabilis. J. Bacteriol. 158, 1037–1040 (1984).
Wang, Q., Frye, J. G., McClelland, M. & Harshey, R. M. Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol. Microbiol. 52, 169–187 (2004).
Overhage, J., Bains, M., Brazas, M. D. & Hancock, R. E. W. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol. 190, 2671–2679 (2008).
Kim, W. & Surette, M. G. Metabolic differentiation in actively swarming Salmonella. Mol. Microbiol. 54, 702–714 (2004).
Andersen, J. B. et al. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149, 37–46 (2003).
Wasserman, H. H., Keggi, J. J. & McKeon, J. E. Serratamolide, a metabolic product of Serratia. J. Am. Chem. Soc. 83, 4107–4108 (1961).
Carrillo, C., Teruel, J. A., Aranda, F. J. & Ortiz, A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta 1611, 91–97 (2003).
Arino, S., Marchal, R. & Vandecasteele, J. P. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J. Appl. Microbiol. 84, 769–776 (1998).
Zhang, Y. & Miller, R. A. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58, 3276–3282 (1992).
Zhang, Y. & Miller, R. A. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60, 2101–2106 (1994).
Allison, C., Lai, H. C. & Hughes, C. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol. Microbiol. 6, 1583–1591 (1992).
Callegan, M. C., Novosad, B. D., Ramtrez, R., Ghelardi, E. & Senesi, S. Role of swarming migration in the pathogenesis of Bacillus endophthalmitis. Invest. Opthalmol. Vis. Sci. 47, 4461–4467 (2006).
Ammendola, A., et al. Serratia liquefaciens swarm cells exhibit enhanced resistance to predation by Tetrahymena sp. FEMS Microbiol. Lett. 164, 69–75 (1998).
Givskov, M., Eberl, L., Christiansen, G., Benedik, M. J. & Molin, S. Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Mol. Microbiol. 15, 445–454 (1995).
Lai, S., Tremblay, J. & Déziel, E. Swarming motility: a multicellular behavior conferring antimicrobial resistance. Environ. Microbiol. 11, 126–136 (2009).
Kim, W., Killam, T., Sood, V. & Surette, M. G. Swarm-cell differentiation in Salmonella enterica serovar Typhimurium results in elevated resistance to multiple antibiotics. J. Bacteriol. 185, 3111–3117 (2003).
Butler, M. T., Wang, Q. & Harshey, R. M. Cell density and mobility protect swarming bacteria against antibiotics. Proc. Natl Acad. Sci. USA 107, 3776–3781 (2010). This study shows that the apparent enhanced antibiotic resistance that is enjoyed by swarming cells is due to their inherent high cell density and rapid movement.
Tsuge, K., Ohata, Y. & Shoda, M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 45, 3566–3573 (2001).
Gooderham, W. J., Bains, M., McPhee, J. B., Wiegard, I. & Hancock, R. E. W. Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J. Bacteriol. 190, 5624–5634 (2008).
Skerker, J. M. & Laub, M. T. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nature Rev. Microbiol. 2, 325–337 (2004).
Berleman, J. E & Kirby, J. R. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol. Rev. 33, 942–957 (2009).
Stickler, D. J. & Feneley, R. C. The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord 6 Apr 2010 (doi: 10.1038/sc.2010.32).
Acknowledgements
I am grateful to R. Belas, H. Berg, E. Déziel, R. Harshey, D. Kysela, L. McCarter, G. O'Toole, P. Rather, R. Rudner, J. Shrout and D. Weibel for thoughtful discussions about swarming motility and critical reading of the manuscript. I also thank P.R., G.O'T. and R.R. for donation of the bacterial strains used in figure 7b–d. Work in my laboratory is supported by the US National Institutes of Health (grant GM093030).
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Related links
DATABASES
Entrez Genome Project
FURTHER INFORMATION
Glossary
- Planktonic
-
Of bacteria: growing as dispersed cells in a liquid environment.
- Flagellum
-
A complex molecular machine, assembled from over 40 different proteins, that is the motor for swimming and swarming motility. Rotation of a membrane-anchored basal body rotates a long, extracellular, corkscrew-shaped filament that acts like a propeller to generate force.
- Type IV pilus
-
A proteinaceous pilus that extends from one pole of the cell, attaches to a surface and retracts, thus acting as the motor for twitching motility. Retraction causes the cell body to move towards the anchor point of the pilus.
- Focal-adhesion complex
-
A putative cell surface-associated complex that anchors a bacterium to a substrate and might act as a motor for gliding motility. When coupled to an internal motor, the cell body moves relative to the focal-adhesion complex.
- Surfactant
-
A secreted molecule that associates with a surface and acts like a lubricant to reduce surface tension.
- Hyperflagellate
-
Of a bacterium: with an increased number of flagella on the cell surface.
- Quorum sensing
-
A strategy by which bacteria regulate gene expression in a manner that is dependent on high population density.
Rights and permissions
About this article
Cite this article
Kearns, D. A field guide to bacterial swarming motility. Nat Rev Microbiol 8, 634–644 (2010). https://doi.org/10.1038/nrmicro2405
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2405
This article is cited by
-
Escherichia coli has an undiscovered ability to inhibit the growth of both Gram-negative and Gram-positive bacteria
Scientific Reports (2024)
-
The collapse of cooperation during range expansion of Pseudomonas aeruginosa
Nature Microbiology (2024)
-
Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity
npj Microgravity (2024)
-
Microbes in porous environments: from active interactions to emergent feedback
Biophysical Reviews (2024)
-
Motility of Acinetobacter baumannii: regulatory systems and controlling strategies
Applied Microbiology and Biotechnology (2024)