Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oral multispecies biofilm development and the key role of cell–cell distance

Key Points

  • Human oral biofilms are multispecies microbial communities that attach to the surfaces of hard and soft tissues in the mouth. The ease with which these communities can be accessed has enabled detailed investigations into their composition, structure and physiology.

  • Specific adhesive interactions between genetically distinct cell types (coaggregation) contribute to the spatial and temporal development of dental plaque biofilms.

  • Microcommunities that contain coaggregation partners juxtaposed on the enamel surface can be identified and micromanipulated. The partner organisms in one of these communities were grown and analyzed in the laboratory and reconstituted as a multispecies biofilm growing on saliva.

  • In open, flowing systems an important consequence of cell–cell proximity is an ability of the cells to communicate.

  • Many oral bacteria produce autoinducer 2, which is a key signal for intercellular communication in biofilms. The presence of autoinducer 2 in two-species communities containing Streptococcus oralis and Actinomyces oris enables mutualistic growth of both organisms.

  • Oral biofilms contain vast networks of intermicrobial interactions, most of which have yet to be identified. In this respect, oral microbial communities are similar to many other biofilm systems, and studies on oral biofilms have produced a paradigm for many aspects of biofilm biology.

Abstract

Growth of oral bacteria in situ requires adhesion to a surface because the constant flow of host secretions thwarts the ability of planktonic cells to grow before they are swallowed. Therefore, oral bacteria evolved to form biofilms on hard tooth surfaces and on soft epithelial tissues, which often contain multiple bacterial species. Because these biofilms are easy to study, they have become the paradigm of multispecies biofilms. In this Review we describe the factors involved in the formation of these biofilms, including the initial adherence to the oral tissues and teeth, cooperation between bacterial species in the biofilm, signalling between the bacteria and its role in pathogenesis, and the transfer of DNA between bacteria. In all these aspects distance between cells of different species is integral for oral biofilm growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oral bacterial colonization.
Figure 2: Relationship between succession of oral communities and autoinducer 2.
Figure 3: Mutualistic Fusobacterium nucleatumAggregatibacter actinomycetemcomitansVeillonella sp. biofilm.

Similar content being viewed by others

References

  1. Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol. 6, 431–440 (2008).

    Article  CAS  Google Scholar 

  2. Huber, J. A. et al. Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ. Microbiol. 11, 1292–1302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lozupone, C. A. & Knight, R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev. 32, 557–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Paster, B. J., Olsen, I., Aas, J. A. & Dewhirst, F. E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000 42, 80–87 (2006).

    Article  PubMed  Google Scholar 

  5. Zaura, E., Keijser, B. J., Huse, S. M. & Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 9, 259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie, H., Lin, X., Wang, B. Y., Wu, J. & Lamont, R. J. Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology 153, 3228–3234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D. & Socransky, S. S. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol. 30, 644–654 (2003).

    Article  PubMed  Google Scholar 

  8. Bos, R., van der Mei, H. C. & Busscher, H. J. Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J. Dent. Res. 75, 809–815 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kolenbrander, P. E. & London, J. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175, 3247–3252 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ledder, R. G., Timperley, A. S., Friswell, M. K., Macfarlane, S. & McBain, A. J. Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol. Ecol. 66, 630–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Min, K. R. & Rickard, A. H. Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation. Appl. Environ. Microbiol. 75, 3987–3997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Diaz, P. I. et al. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72, 2837–2848 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dige, I., Nilsson, H., Kilian, M. & Nyvad, B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci. 115, 459–467 (2007).

    Article  PubMed  Google Scholar 

  15. Dige, I., Nyengaard, J. R., Kilian, M. & Nyvad, B. Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol. Immunol. 24, 69–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Dige, I., Raarup, M. K., Nyengaard, J. R., Kilian, M. & Nyvad, B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155, 2116–2126 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Nyvad, B. & Kilian, M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent Res. 95, 369–380 (1987).

    CAS  PubMed  Google Scholar 

  18. Nyvad, B. & Kilian, M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 24, 267–272 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Ding, A. M., Palmer, R. J. Jr, Cisar, J. O. & Kolenbrander, P. E. Shear-enhanced oral microbial adhesion. Appl. Environ. Microbiol. 76, 1294–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chalmers, N. I., Palmer, R. J. Jr, Cisar, J. O. & Kolenbrander, P. E. Characterization of a Streptococcus sp-Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol. 190, 8145–8154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chalmers, N. I. et al. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl. Environ. Microbiol. 73, 630–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Jakubovics, N. S., Gill, S. R., Iobst, S. E., Vickerman, M. M. & Kolenbrander, P. E. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J. Bacteriol. 190, 3646–3657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakubovics, N. S., Gill, S. R., Vickerman, M. M. & Kolenbrander, P. E. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol. Ecol. 66, 637–644 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Palmer, R. J. Jr, Diaz, P. I. & Kolenbrander, P. E. Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J. Bacteriol. 188, 4117–4124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palmer, R. J. Jr, Gordon, S. M., Cisar, J. O. & Kolenbrander, P. E. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185, 3400–3409 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Palmer, R. J. Jr, Kazmerzak, K., Hansen, M. C. & Kolenbrander, P. E. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69, 5794–5804 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Periasamy, S., Chalmers, N. I., Du-Thumm, L. & Kolenbrander, P. E. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl. Environ. Microbiol. 75, 3250–3257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Periasamy, S. & Kolenbrander, P. E. Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities in saliva with Fusobacterium nucleatum and Veillonella sp. Infect. Immun. 77, 3542–3551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rickard, A. H., Campagna, S. R. & Kolenbrander, P. E. Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms. J. Appl. Microbiol. 105, 2096–2103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rickard, A. H. et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60, 1446–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Periasamy, S. & Kolenbrander, P. E. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J. Bacteriol. 191, 6804–6811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Periasamy, S. & Kolenbrander, P. E. Central role of early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle and late colonizers of enamel. J. Bacteriol. 192, 12 Feb 2010 (doi:10.1128/JB.01631-09).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaplan, C. W., Lux, R., Haake, S. K. & Shi, W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71, 35–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Buckley, M. R. Microbial communities: from life apart to life together. American Academy of Microbiology [online] (2002).

  35. Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1241–1249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hardie, K. R. & Heurlier, K. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nature Rev. Microbiol. 6, 635–643 (2008).

    Article  CAS  Google Scholar 

  37. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006).

    Article  CAS  Google Scholar 

  38. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Bassler, B. L., Greenberg, E. P. & Stevens, A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179, 4043–4045 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cosseau, C. et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect. Immun. 76, 4163–4175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Handfield, M. et al. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions. Cell. Microbiol. 7, 811–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hasegawa, Y. et al. Gingival epithelial cell transcriptional responses to commensal and opportunistic oral microbial species. Infect. Immun. 75, 2540–2547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paddick, J. S., Brailsford, S. R., Kidd, E. A. M. & Beighton, D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl. Environ. Microbiol. 71, 2467–2472 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wickstrom, C. & Svensater, G. Salivary gel-forming mucin MUC5B - a nutrient for dental plaque bacteria. Oral Microbiol. Immunol. 23, 177–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dawes, C. What is the critical pH and why does a tooth dissolve in acid? J. Can. Dent. Assoc. 69, 722–724 (2003).

    PubMed  Google Scholar 

  46. de Soet, J. J., Nyvad, B. & Kilian, M. Strain-related acid production by oral streptococci. Caries Res. 34, 486–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Burne, R. A. & Marquis, R. E. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol. Lett. 193, 1–6 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Marsh, P. D. Are dental diseases examples of ecological catastrophes? Microbiology 149, 279–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Becker, M. R. et al. Molecular analysis of bacterial species associated with childhood caries. J. Clin. Microbiol. 40, 1001–1009 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lo, E. C., Schwarz, E. & Wong, M. C. Arresting dentine caries in Chinese preschool children. Int. J. Paediatr. Dent. 8, 253–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Dixon, D. R., Reife, R. A., Cebra, J. J. & Darveau, R. P. Commensal bacteria influence innate status within gingival tissues: a pilot study. J. Periodontol. 75, 1486–1492 (2004).

    Article  PubMed  Google Scholar 

  52. Socransky, S. S., Smith, C. & Haffajee, A. D. Subgingival microbial profiles in refractory periodontal disease. J. Clin. Periodontol. 29, 260–268 (2002).

    Article  PubMed  Google Scholar 

  53. Haffajee, A. D., Teles, R. P. & Socransky, S. S. The effect of periodontal therapy on the composition of the subgingival microbiota. Periodontol. 2000 42, 219–258 (2006).

    Article  PubMed  Google Scholar 

  54. Kilic, A. O. et al. Involvement of Streptococcus gordonii b-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J. Bacteriol. 186, 4246–4253 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Merritt, J., Niu, G., Okinaga, T. & Qi, F. Autoaggregation response of Fusobacterium nucleatum. Appl. Environ. Microbiol. 75, 7725–7733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stadtman, E. R. & Levine, R. L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25, 207–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Kreth, J., Zhang, Y. & Herzberg, M. C. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 190, 4632–4640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuboniwa, M. et al. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol. 9, 98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Simionato, M. R. et al. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect. Immun. 74, 6419–6428 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Egland, P. G., Palmer, R. J. Jr & Kolenbrander, P. E. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA 101, 16917–16922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson, B. P. et al. Interspecies signaling between Veillonella atypica and Streptococcus gordonii requires the transcription factor CcpA. J. Bacteriol. 191, 5563–5565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bamford, C. V. et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77, 3696–3704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Samaranayake, L. P., Keung Leung, W. & Jin, L. Oral mucosal fungal infections. Periodontol. 2000 49, 39–59 (2009).

    Article  PubMed  Google Scholar 

  64. Xavier, K. B. et al. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol. 2, 128–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ahmed, N. A., Petersen, F. C. & Scheie, A. A. AI-2/LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics. Antimicrob. Agents Chemother. 53, 4258–4263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pecharki, D., Petersen, F. C. & Scheie, A. A. LuxS and expression of virulence factors in Streptococcus intermedius. Oral Microbiol. Immunol. 23, 79–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Semmelhack, M. F., Campagna, S. R., Federle, M. J. & Bassler, B. L. An expeditious synthesis of DPD and boron binding studies. Org. Lett. 7, 569–572 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Frias, J., Olle, E. & Alsina, M. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69, 3431–3434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, J. et al. Identification of early microbial colonizers in human dental biofilm. J. Appl. Microbiol. 97, 1311–1318 (2004).

    Article  CAS  Google Scholar 

  70. Kolenbrander, P. E., Andersen, R. N. & Moore, L. V. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun. 57, 3194–3203 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Moore, W. E. & Moore, L. V. The bacteria of periodontal diseases. Periodontol. 2000 5, 66–77 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Taga, M. E., Miller, S. T. & Bassler, B. L. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol. Microbiol. 50, 1411–1427 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Shao, H., James, D., Lamont, R. J. & Demuth, D. R. Differential interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2. J. Bacteriol. 189, 5559–5565 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shao, H., Lamont, R. J. & Demuth, D. R. Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect. Immun. 75, 4211–4218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roberts, A. P. et al. Transfer of TN916-like elements in microcosm dental plaques. Antimicrob. Agents Chemother. 45, 2943–2946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Warburton, P. J., Palmer, R. M., Munson, M. A. & Wade, W. G. Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J. Antimicrob. Chemother. 60, 973–980 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Rice, L. B. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42, 1871–1877 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mira, A. in Molecular Oral Microbiology, (ed Rogers, A. H.) 65–85 (Caister, Norfolk, UK, 2008).

    Google Scholar 

  79. Naito, M. et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15, 215–225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koehler, A. et al. Multilocus sequence analysis of Porphyromonas gingivalis indicates frequent recombination. Microbiology 149, 2407–2415 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Tribble, G. D., Lamont, G. J., Progulske-Fox, A. & Lamont, R. J. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J. Bacteriol. 189, 6382–6388 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, B. Y., Chi, B. & Kuramitsu, H. K. Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol. Immunol. 17, 108–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183, 897–908 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Petersen, F. C., Tao, L. & Scheie, A. A. DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J. Bacteriol. 187, 4392–4400 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tamura, S. et al. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral Microbiol. Immunol. 24, 152–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, B. Y. & Kuramitsu, H. K. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol. 71, 354–362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kreth, J., Merritt, J., Shi, W. & Qi, F. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol. 57, 392–404 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Perry, J. A., Jones, M. B., Peterson, S. N., Cvitkovitch, D. G. & Levesque, C. M. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol. Microbiol. 72, 905–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steinberger, R. E. & Holden, P. A. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl. Environ. Microbiol. 71, 5404–5410 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tetz, G. V., Artemenko, N. K. & Tetz, V. V. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother. 53, 1204–1209 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Mulcahy, H., Charron-Mazenod, L. & Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4, e1000213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Agnelli, A. et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem. 36, 859–868 (2004).

    Article  CAS  Google Scholar 

  93. Gao, Z., Tseng, C.-H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kroes, I., Lepp, P. W. & Relman, D. A. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA 96, 14547–14552 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. 104, 11889–11894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Branda, S. S. et al. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol. 186, 3970–3979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kearns, D. B. & Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083–3094 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K. & Smeltzer, M. S. Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect. Immun. 70, 470–480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fine, D. H. et al. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology 145, 1335–1347 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Saito, A. et al. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol. 54, 349–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Takahashi, N. & Nyvad, B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 42, 409–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Pereira, C. S., McAuley, J. R., Taga, M. E., Xavier, K. B. & Miller, S. T. Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria. Mol. Microbiol. 70, 1223–1235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takenaka, S., Pitts, B., Trivedi, H. M. & Stewart, P. S. Diffusion of macromolecules in model oral biofilms. Appl. Environ. Microbiol. 75, 1750–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuboniwa, M. et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol. 60, 121–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kolenbrander, P. E. et al. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66, 486–505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was improved by the comments of three anonymous reviewers and was supported in part by the Intramural Research Program of the National Institute of Dental and Craniofacial Research, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Kolenbrander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Phylotype

A taxonomic unit typically defined by 99% similar 16S rRNA gene sequences; this is the molecular equivalent of a species and it allows inclusion of yet-to-be cultured organisms in a taxonomic framework.

Gingival crevicular fluid

Host-derived exudate into the sulcus.

Salivary pellicle

A layer of proteins and glycoproteins of salivary origin that permanently coats the surfaces of oral tissues.

Desquamating surface

A surface that sheds the outer layers.

Coadhesion

The adherence of a planktonic microorganism to a genetically distinct microbial cell that is immobilized on a surface.

Coaggregation

The binding of two genetically distinct microorganisms suspended in the fluid phase that occurs by means of highly specific interactions between components on the respective cell surfaces.

Supragingival dental plaque

Dental plaque that occurs on areas of the teeth that are not covered by gum tissue.

Subgingival dental plaque

Dental plaque on tooth surfaces below the level of the gums.

Periodontitis

Inflammatory gum disease involving the destruction of the tissues surrounding the teeth, loss of attachment of the gums and the creation of a 'pocket' between the teeth and gums.

Gingivitis

Minor and reversible inflammation of the gum tissue.

Competent

State of bacteria in which they can take up extracellular DNA from the environment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolenbrander, P., Palmer, R., Periasamy, S. et al. Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol 8, 471–480 (2010). https://doi.org/10.1038/nrmicro2381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2381

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology