Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial polymers: biosynthesis, modifications and applications

Key Points

  • Bacteria are capable of producing a vast diversity of polymers serving a range of biological functions, such as reserve material, protective capsules and slimes, and biofilm matrix components. Several of these polymers have chemical and material properties that are suitable for industrial and medical applications, and many are therefore commercially produced, providing a valuable source for renewable, biodegradable and biocompatible materials.

  • Bacterial polymers can be categorized into polysaccharides, polyamides, polyesters and the inorganic polyanhydrides. Although biosynthesis of the various activated precursors (for example, nucleoside diphosphate sugars and hydroxyacyl-CoA thioesters) is well understood, the molecular mechanisms of polymerisation and, when relevant, secretion remain elusive.

  • A central goal in the field is to obtain a deeper understanding of the operation and three-dimensional architecture of polymerases and synthases, or the respective polymerisation and secretion multiprotein complexes, in order to increase the efficiency of engineering experiments. Random mutagenesis approaches have already proved to be successful, generating biosynthesis enzymes with a change in substrate specificity and activity and enabling the efficient production of modified polymers.

  • The increasing knowledge with respect to biosynthesis pathways and key biosynthesis enzymes has enabled metabolic engineering and protein engineering, leading to the production of modified and new polymers with unique and valuable material properties. These engineering approaches are informed by recent advances in the analysis of the polymer structure–material property relationship.

  • Aside from the possibility of easily engineering bacterial production hosts for the production of modified polymers, in vitro enzymatic and chemical modifications offer additional design space to the manufacture of bacterial polymers. The purification of polymerases and synthases or subcellular fractions containing the respective enzyme activities from bacteria allows controlled processive in vitro synthesis of defined polymers.

  • Whereas several bacterial exopolysaccharides and polyhydroxyalkanoates are already commercially produced, the polyamides and polyphosphates are not commercially produced by bacterial fermentation. However, recent advances in polyamide biosynthesis hold promise for future commercial synthesis.

  • The economics of the bacterial production of polymers is largely driven by the cost of the precursor substrate, the productivity of the host organisms, the upstream and downstream processing costs and the application value of the polymer. In addition, when bacterial polymers such as the polyhydroxyalkanoates compete with oil-based polymers, crude oil prices substantially affect polymer economics.

  • Notable progress has been made in all of the areas mentioned above, and exploitation of metabolic engineering in particular has led to the generation of exciting new production hosts able to synthesize even unnatural polymers such as polythioesters and polylactic acid. An interesting new development considers the intracellularly formed spherical polyhydroxyalkanoate granules as versatile biobeads, the surface proteins of which can be engineered to display a range of protein functions for applications in bioseparation, protein production, biocatalysis, diagnostics and antigen delivery.

Abstract

Bacteria can synthesize a wide range of biopolymers that serve diverse biological functions and have material properties suitable for numerous industrial and medical applications. A better understanding of the fundamental processes involved in polymer biosynthesis and the regulation of these processes has created the foundation for metabolic- and protein-engineering approaches to improve economic-production efficiency and to produce tailor-made polymers with highly applicable material properties. Here, I summarize the key aspects of bacterial biopolymer production and highlight how a better understanding of polymer biosynthesis and material properties can lead to increased use of bacterial biopolymers as valuable renewable products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of representative bacterial polymers.
Figure 2: Genetic organization of key biosynthesis genes and operons.
Figure 3: Bacterial polymer biosynthesis pathways from intermediates of central metabolism.
Figure 4: Selected models of polymer synthesis and secretion machineries.
Figure 5: Strategies for the production of modified biopolymers with altered material properties that enhance application performance.
Figure 6: Modifications of biopolymers and impact on material properties.

Similar content being viewed by others

References

  1. Anderson, A. J., Haywood, G. W. & Dawes, E. A. Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int. J. Biol. Macromol. 12, 102–105 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Rehm, B. H. A. & Valla, S. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. Biotechnol. 48, 281–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Ryder, C., Byrd, M. & Wozniak, D. J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 10, 644–648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pham, T. H., Webb, J. S. & Rehm, B. H. A. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150, 3405–3413 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Vandamme, E. J., Bruggeman, G., De Baets, S. & Vanhooren, P. T. Useful polymers of microbial origin. Agro Food Industry Hi-Tech. 7, 21–25 (1996).

    CAS  Google Scholar 

  6. Chen, G. Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38, 2434–2446 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Becker, A., Katzen, F., Puhler, A. & Ielpi, L. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 50, 145–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Valla, S., Ertesvag, H., Tonouchi, N. & Fjaervig, E. in Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives (ed. Rehm, B. H. A.) 43–78 (Caister Academic, Norwich, UK, 2009).

    Google Scholar 

  11. Remminghorst, U. & Rehm, B. H. A. Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett. 28, 1701–1712 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Hickman, J. W. & Harwood, C. S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69, 376–389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leech, A. J., Sprinkle, A., Wood, L., Wozniak, D. J. & Ohman, D. E. The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J. Bacteriol. 190, 581–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Sakuragi, Y. & Kolter, R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol. 189, 5383–5386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ionescu, M. & Belkin, S. Overproduction of exopolysaccharides by an Escherichia coli K-12 rpoS mutant in response to osmotic stress. Appl. Environ. Microbiol. 75, 483–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Weber, H., Pesavento, C., Possling, A., Tischendorf, G. & Hengge, R. Cyclic-di-GMP-mediated signalling within the σS network of Escherichia coli. Mol. Microbiol. 62, 1014–1034 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Castaneda, M., Sanchez, J., Moreno, S., Nunez, C. & Espin, G. The global regulators GacA and σS form part of a cascade that controls alginate production in Azotobacter vinelandii. J. Bacteriol. 183, 6787–6793 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  19. Ruffing, A. & Chen, R. R. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb. Cell Fact. 5, 25 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Parolis, H. et al. The structure of the exopolysaccharide produced by the halophilic Archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr. Res. 295, 147–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Carrasco, F., Chornet, E., Overend, R. P. & Costa, J. A generalized correlation for the viscosity of dextrans in aequeous solutions as a function of temperature, concentration, and molecular weight at low shear rates. J. Appl. Polym. Sci. 37, 2087–2098 (1989).

    Article  CAS  Google Scholar 

  22. Leathers, T. D. in Biopolymers for Medical and Pharmaceutical Applications (eds Steinbüchel, A. & Marchessault, R. H.) 537–560 (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  23. van Hijum, S. A., Kralj, S., Ozimek, L. K., Dijkhuizen, L. & van Geel-Schutten, I. G. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70, 157–176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robyt, J. F., Yoon, S. H. & Mukerjea, R. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr. Res. 343, 3039–3048 (2008). This study demonstrates the involvement of conserved amino acids in the dextransucrase active site (Asp551, Glu589 and Asp622) in the polymerization of dextran, as well as showing that a single active site mediates dextran synthesis by a two-catalytic-site insertion mechanism.

    Article  CAS  PubMed  Google Scholar 

  25. Moulis, C. et al. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J. Biol. Chem. 281, 31254–31267 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, D. & Robyt, J. F. Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases. Enzyme Microb. Technol. 16, 659–664 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Brown, S. H. & Pummill, P. E. Recombinant production of hyaluronic acid. Curr. Pharm. Biotechnol. 9, 239–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Dougherty, B. A. & van de Rijn, I. Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A streptococci. J. Biol. Chem. 269, 169–175 (1994).

    CAS  PubMed  Google Scholar 

  29. Rehm, B. H. A. in Microbiology Monographs, Alginates: Biology and Applications (ed. Rehm, B. H. A.) 55–72 (Springer, Berlin, 2009).

    Google Scholar 

  30. Ohman, D. E. in Microbiology Monographs, Alginates: Biology and Applications (ed. Rehm, B. H. A.) 117–134 (Springer, Berlin, 2009).

    Book  Google Scholar 

  31. Remminghorst, U., Hay, I. D. & Rehm, B. H. A. Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. J. Biotechnol. 140, 176–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Remminghorst, U. & Rehm, B. H. A. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 72, 298–305 (2006). The first in vitro synthesis of alginate, providing evidence for a multiprotein polymerization and secretion complex spanning the envelope and identifying Alg8 as a key protein for alginate overproduction.

    Article  CAS  PubMed  Google Scholar 

  33. Saxena, I. M., Brown, R. M. Jr, Fevre, M., Geremia, R. A. & Henrissat, B. Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J. Bacteriol. 177, 1419–1424 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steigedal, M. et al. The Azotobacter vinelandii AlgE mannuronan C-5-epimerase family is essential for the in vivo control of alginate monomer composition and for functional cyst formation. Environ. Microbiol. 10, 1760–1770 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gimmestad, M. et al. The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J. Bacteriol. 185, 3515–3523 (2003). This article describes the production of modified alginate (polymannuronate) by engineering a P. fluorescens strain lacking mannuronan C5 epimerase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whitfield, C. & Paiment, A. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338, 2491–2502 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Rahn, A., Drummelsmith, J. & Whitfield, C. Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J. Bacteriol. 181, 2307–2313 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Arakawa, Y. et al. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J. Bacteriol. 177, 1788–1796 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cuthbertson, L., Mainprize, I. L., Naismith, J. H. & Whitfield, C. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiol. Mol. Biol. Rev. 73, 155–177 (2009). An outstanding review describing the role of the conserved proteins involved in the final steps of exopolysaccharide formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ford, R. C. et al. Structure-function relationships of the outer membrane translocon Wza investigated by cryo-electron microscopy and mutagenesis. J. Struct. Biol. 166, 172–182 (2009). This paper provides an insight into the structure–function relationship of an outer-membrane protein complex involved in export of expolysaccharides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Whitfield, C. & Larue, K. Stop and go: regulation of chain length in the biosynthesis of bacterial polysaccharides. Nature Struct. Mol. Biol. 15, 121–123 (2008).

    Article  CAS  Google Scholar 

  42. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Barreras, M., Salinas, S. R., Abdian, P. L., Kampel, M. A. & Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283, 25027–25035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, L., Liu, D. & Reeves, P. R. C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J. Bacteriol. 178, 2598–2604 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, L. & Reeves, P. R. Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. J. Bacteriol. 176, 4348–4356 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drummelsmith, J. & Whitfield, C. Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol. Microbiol. 31, 1321–1332 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Tocilj, A. et al. Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nature Struct. Mol. Biol. 15, 130–138 (2008).

    Article  CAS  Google Scholar 

  48. Collins, R. F. & Derrick, J. P. Wza: a new structural paradigm for outer membrane secretory proteins? Trends Microbiol. 15, 96–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Sheng, F., Jia, X., Yep, A., Preiss, J. & Geiger, J. H. The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. J. Biol. Chem. 284, 17796–17807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Horcajada, C., Guinovart, J. J., Fita, I. & Ferrer, J. C. Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J. Biol. Chem. 281, 2923–2931 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Buschiazzo, A. et al. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J. 23, 3196–3205 (2004). A seminal paper reporting the first crystal structure of glycogen synthase in the presence and absence of adenosine diphosphate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oppermann-Sanio, F. B. & Steinbüchel, A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89, 11–22 (2002).

    Article  PubMed  Google Scholar 

  53. Joentgen, W., Groth, T., Steinbüchel, A., Hai, T. & Oppermann, F. B. Polyaspartic acid homopolymers and copolymers: biotechnical production and use thereof. International patent application WO 98/39090 (1998).

  54. Schwammborn, M. Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polym. Degrad. Stab. 59, 39–45 (1998).

    Article  Google Scholar 

  55. Berg, H. et al. Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin): mechanism of the cyanophycin synthetase reaction studied with synthetic primers. Eur. J. Biochem. 267, 5561–5570 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Aboulmagd, E., Oppermann-Sanio, F. B. & Steinbüchel, A. Purification of Synechocystis sp. strain PCC6308 cyanophycin synthetase and its characterization with respect to substrate and primer specificity. Appl. Environ. Microbiol. 67, 2176–2182 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simon, R. D. The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochim. Biophys. Acta 422, 407–418 (1976). This investigation demonstrates the isolation and purification of an enzyme that synthesizes cyanophycin in vitro and analyses the basic properties of the biosynthesis reaction.

    Article  CAS  PubMed  Google Scholar 

  58. Ziegler, K. et al. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur. J. Biochem. 254, 154–159 (1998). The identification of the cyanophycin synthetase gene mediating recombinant cyanophycin production in E. coli and a biochemical characterization of the encoded cyanophycin synthetase.

    Article  CAS  PubMed  Google Scholar 

  59. Krehenbrink, M. & Steinbüchel, A. Partial purification and characterization of a non-cyanobacterial cyanophycin synthetase from Acinetobacter calcoaceticus strain ADP1 with regard to substrate specificity, substrate affinity and binding to cyanophycin. Microbiology 150, 2599–2608 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Buescher, J. M. & Margaritis, A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 27, 1–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Candela, T., Moya, M., Haustant, M. & Fouet, A. Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can. J. Microbiol. 55, 627–632 (2009). The first description of poly-γ-glutamate biosynthesis by a Gram-negative bacterium.

    Article  CAS  PubMed  Google Scholar 

  62. Eveland, S. S., Pompliano, D. L. & Anderson, M. S. Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-γ-glutamate ligases: identification of a ligase superfamily. Biochemistry 36, 6223–6229 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Urushibata, Y., Tokuyama, S. & Tahara, Y. Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production. J. Bacteriol. 184, 337–343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ashiuchi, M., Soda, K. & Misono, H. A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochem. Biophys. Res. Commun. 263, 6–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Candela, T. & Fouet, A. Poly-γ-glutamate in bacteria. Mol. Microbiol. 60, 1091–1098 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Candela, T. & Fouet, A. Bacillus anthracis CapD, belonging to the γ-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol. Microbiol. 57, 717–726 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Yamanaka, K., Maruyama, C., Takagi, H. & Hamano, Y. ɛ-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chem. Biol. 4, 766–772 (2008). A seminal paper describing the cloning of the ɛ-poly- L -lysine synthetase gene and the enzymatic characterization of the encoded protein, revealing an amino acid ligase-like catalytic activity for peptide bond formation.

    Article  CAS  Google Scholar 

  68. Kessler, B. & Witholt, B. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J. Biotechnol. 86, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Grage, K. et al. Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10, 660–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Jendrossek, D. Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J. Bacteriol. 191, 3195–3202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andrade, A. L. in Plastics and the Environment (ed. Andrady, A.) 3–76 (Wiley Interscience, Hoboken, 2003).

    Book  Google Scholar 

  72. Rehm, B. H. A. & Steinbüchel, A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25, 3–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Aldor, I. S. & Keasling, J. D. Process. design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 14, 475–483 (2003). An excellent review on metabolic-engineering approaches towards the production of modified and new PHAs in the context of biotechnological production processes.

    Article  CAS  PubMed  Google Scholar 

  74. Fukui, T., Shiomi, N. & Doi, Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180, 667–673 (1998).

    CAS  PubMed  Google Scholar 

  75. Rehm, B. H. A., Krüger, N. & Steinbüchel, A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J. Biol. Chem. 273, 24044–24051 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Schubert, P., Steinbüchel, A. & Schlegel, H. G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170, 5837–5847 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Slater, S. C., Voige, W. H. & Dennis, D. E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170, 4431–4436 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peoples, O. P. & Sinskey, A. J. Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J. Biol. Chem. 264, 15293–15297 (1989).

    CAS  PubMed  Google Scholar 

  79. Rehm, B. H. A. Polyester synthases: natural catalysts for plastics. Biochem. J. 376, 15–33 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Steinbüchel, A. et al. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol. Rev. 104, 347–350 (1993).

    Article  Google Scholar 

  81. Wodzinska, J. et al. Polyhydroxybutyrate synthase: evidence for covalent catalysis. J. Am. Chem. Soc. 118, 6319–6320 (1996).

    Article  CAS  Google Scholar 

  82. Tian, J., Sinskey, A. J. & Stubbe, J. Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase. Biochemistry 44, 1495–1503 (2005). This study provides insight into the reaction mechanism of the PHA synthase.

    Article  CAS  PubMed  Google Scholar 

  83. Tian, J., Sinskey, A. J. & Stubbe, J. Class III polyhydroxybutyrate synthase: involvement in chain termination and reinitiation. Biochemistry 44, 8369–8377 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Sim, S. J. et al. PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotech. 15, 63–67 (1997). This work provides evidence that PHA chain length is controlled by the copy number of the PHA synthase.

    Article  CAS  Google Scholar 

  85. Reusch, R. N. & Sadoff, H. L. Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl Acad. Sci. USA 85, 4176–4180 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kameda, A. et al. A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. J. Biosci. Bioeng. 91, 557–5563 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Noguchi, T. & Shiba, T. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci. Biotechnol. Biochem. 62, 1594–1596 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, Y., Huang, W., Lee, S. S. & Xu, W. Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep. 6, 681–687 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kumble, K. D., Ahn, K. & Kornberg, A. Phosphohistidyl active sites in polyphosphate kinase of Escherichia coli. Proc. Natl Acad. Sci. USA 93, 14391–14395 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ishige, K., Zhang, H. & Kornberg, A. Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP. Proc. Natl Acad. Sci. USA 99, 16684–16688 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, H. Y. et al. Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol. Microbiol. 27, 717–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Rao, N. N., Gomez-Garcia, M. R. & Kornberg, A. Inorganic polyphophate: essential for growth and survival. Annu. Rev. Biochem. 78, 605–647 (2009). An outstanding review describing the synthesis of polyphosphates and their biological functions.

    Article  CAS  PubMed  Google Scholar 

  93. Pohlmann, A. et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nature Biotech. 24, 1257–1262 (2006). This study unravels the genome sequence of R. eutropha and reflects on the status of this species as a model bioplastics producer.

    Article  Google Scholar 

  94. Vorholter, F. J. et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J. Biotechnol. 134, 33–45 (2008).

    Article  PubMed  CAS  Google Scholar 

  95. Lee, S. Y. Deciphering bioplastic production. Nature Biotech. 24, 1227–1229 (2006).

    Article  CAS  Google Scholar 

  96. Kalia, V. C., Chauhan, A., Bhattacharyya, G. & Rashmi . Genomic databases yield novel bioplastic producers. Nature Biotech. 21, 845–846 (2003).

    Article  CAS  Google Scholar 

  97. Peoples, O. P. & Sinskey, A. J. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264, 15298–15303 (1989).

    CAS  PubMed  Google Scholar 

  98. Chien, L. J. & Lee, C. K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 23, 1017–1022 (2007).

    CAS  PubMed  Google Scholar 

  99. Jiang, H., Shang, L., Yoon, S. H., Lee, S. Y. & Yu, Z. Optimal production of poly-γ-glutamic acid by metabolically engineered Escherichia coli. Biotechnol. Lett. 28, 1241–1246 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Park, S. J., Lee, S. Y. & Lee, Y. Biosynthesis of (R)-3-hydroxyalkanoic acids by metabolically engineered Escherichia coli. Appl. Biochem. Biotechnol. 114, 373–379 (2004).

    Article  Google Scholar 

  101. Lee, S. Y. & Choi, J. I. Production of microbial polyester by fermentation of recombinant microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 183–207 (2001).

    CAS  PubMed  Google Scholar 

  102. Frey, K. M., Oppermann-Sanio, F. B., Schmidt, H. & Steinbüchel, A. Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Appl. Environ. Microbiol. 68, 3377–3384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mao, Z., Shin, H. D. & Chen, R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl. Microbiol. Biotechnol. 84, 63–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Lutke-Eversloh, T. et al. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nature Mater. 1, 236–240 (2002). The first description of the production of unnatural polythioesters using metabolically engineered E. coli as the producing species and mercaptoalkanoates as precursor substrates.

    Article  CAS  Google Scholar 

  105. Taguchi, S. et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl Acad. Sci. USA 105, 17323–17327 (2008). The first paper to describe the incorporation of lactate into PHA by metabolically engineered E. coli , providing an important step towards one-step production of polylactic acid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doi, Y. Biotechnology: unnatural biopolymers. Nature Mater. 1, 207–208 (2002).

    Article  CAS  Google Scholar 

  107. Jung, Y. K., Kim, T. Y., Park, S. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105, 161–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, T. H. et al. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 105, 150–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Amara, A. A. & Rehm, B. H. A. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem. J. 374, 413–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rehm, B. H. A., Antonio, R. V., Spiekermann, P., Amara, A. A. & Steinbüchel, A. Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim. Biophys. Acta 1594, 178–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Kichise, T., Taguchi, S. & Doi, Y. Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl. Environ. Microbiol. 68, 2411–2419 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Monchois, V., Vignon, M. & Russell, R. R. Mutagenesis of asp-569 of glucosyltransferase I glucansucrase modulates glucan and oligosaccharide synthesis. Appl. Environ. Microbiol. 66, 1923–1927 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Füser, G. & Steinbüchel, A. Analysis of genome sequences for genes of cyanophycin metabolism: identifying putative cyanophycin metabolizing prokaryotes. Macromol. Biosci. 7, 278–296 (2007).

    Article  PubMed  CAS  Google Scholar 

  114. Schallmey, M., Singh, A. & Ward, O. P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Valla, S., Li, J., Ertesvag, H., Barbeyron, T. & Lindahl, U. Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. Biochimie 83, 819–830 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Lewis, J. G. & Rehm, B. H. A. ZZ polyester beads: an efficient and simple method for purifying IgG from mouse hybridoma supernatants. J. Immunol. Methods 346, 71–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Grage, K. & Rehm, B. H. A. In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Bioconjug. Chem. 19, 254–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Brockelbank, J. A., Peters, V. & Rehm, B. H. A. Recombinant Escherichia coli strain produces a ZZ domain displaying biopolyester granules suitable for immunoglobulin G purification. Appl. Environ. Microbiol. 72, 7394–7397 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rasiah, I. A. & Rehm, B. H. A. One-step production of immobilized α-amylase in recombinant Escherichia coli. Appl. Environ. Microbiol. 75, 2012–2016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Banki, M. R., Gerngross, T. U. & Wood, D. W. Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci. 14, 1387–1395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baeckstroem, T. B., Brockelbank, J. A. & Rehm, B. H. A. Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol. 7, 3 (2007).

    Article  CAS  Google Scholar 

  122. Parlane, N. A., Wedlock, D. N., Buddle, B. M. & Rehm, B. H. A. Bacterial polyester inclusions engineered to display vaccine candidate antigens for use as a novel class of safe and efficient vaccine delivery agents. Appl. Environ. Microbiol. 75, 7739–7744 (2009). The first description of the application of engineered bacterial-polymer inclusions as antigen delivery systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities. Philos. Trans R. Soc. Lond. B Biol. Sci. 364, 2115–2126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pasteur, L. On the viscous fermentation and the butyrous fermentation. Bull. Soc. Chim. Paris 11, 30–31 (1861) (in French).

    Google Scholar 

  125. Van Tieghem, P. On sugar mill gum. Ann. Sci. Nature Bot. Biol. Veg. 7, 180–203 (1878).

    Google Scholar 

  126. Brown, A. J. On an acetic ferment which forms cellulose. J. Chem. Soc. 49, 432–439 (1886).

    Article  CAS  Google Scholar 

  127. Borzi, A. Le communicazioni intracellulari delle Nostochinae. Malpighia 1, 28–74 (1887) (in Italian).

    Google Scholar 

  128. Lemoigne, M. Produits de deshydration et de polymerisation de lácide β-oxybutyrique. Bull. Soc. Chim. Bio. 8, 770–782 (1926) (in French).

    CAS  Google Scholar 

  129. Linker, A. & Jones, R. S. A new polysaccharide resembling alginic acid isolated from pseudomonads. J. Biol. Chem. 241, 3845–3851 (1966).

    CAS  PubMed  Google Scholar 

  130. Leach, J. G., Lilly, V. G., Wilson, H. A. & Purvis, M. R. Bacterial polysaccharides: the nature and the function of the exudate produced by Xanthomonas phaseoli. Phytopathology 47, 113–120 (1957).

    CAS  Google Scholar 

  131. Ivanovics, G. & Erdos, L. Ein beitrag zum wesen der kapselsubstanz des milzbrandbazillus. Z. Immunitatsforsch. 90, 5–19 (1937) (in German).

    CAS  Google Scholar 

  132. Kornberg, A., Kornberg, S. R. & Simms, E. S. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim. Biophys. Acta 20, 215–227 (1956).

    Article  CAS  PubMed  Google Scholar 

  133. Pindar, D. F. & Bucke, C. The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem. J. 152, 617–622 (1975).

    Article  CAS  PubMed  Google Scholar 

  134. Couperwhite, I. & McCallum, M. F. Polysaccharide production and the possible occurrence of GDP-D-mannose dehydrogenase in Azotobacter vinelandii. Antonie Van Leeuwenhoek 41, 25–32 (1975).

    CAS  Google Scholar 

  135. Hestrin, S., Aschner, M. & Mager, J. Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature 159, 64–65 (1947).

    Article  CAS  PubMed  Google Scholar 

  136. Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345–352 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Glaser, L. The enzymic synthesis of cellulose by Acetobacter xylinum. Biochim. Biophys. Acta 25, 436 (1957).

    Article  CAS  PubMed  Google Scholar 

  138. Ielpi, L., Couso, R. O. & Dankert, M. A. Pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid. Biochem. Biophys. Res. Commun. 102, 1400–1408 (1981).

    Article  CAS  PubMed  Google Scholar 

  139. Oeding, V. & Schlegel, H. G. β-ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem. J. 134, 239–248 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Greenberg, E. & Preiss, J. The occurrence of adenosine diphosphate glucose: glycogen transglucosylase in bacteria. J. Biol. Chem. 239, 4314–4315 (1964).

    CAS  PubMed  Google Scholar 

  141. Thorne, L., Tansey, L. & Pollock, T. J. Clustering of mutations blocking synthesis of xanthan gum by Xanthomonas campestris. J. Bacteriol. 169, 3593–3600 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Darzins, A., Wang, S. K., Vanags, R. I. & Chakrabarty, A. M. Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 164, 516–524 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wong, H. C. et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl Acad. Sci. USA 87, 8130–8134 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Hara, T., Nagatomo, S., Ogata, S. & Ueda, S. The DNA sequence of γ-glutamyltranspeptidase gene of Bacillus subtilis (natto) plasmid pUH1. Appl. Microbiol. Biotechnol. 37, 211–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Remminghorst, U. & Rehm, B. H. A. in Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives (ed. Rehm, B. H. A.) 13–42 (Caister Academic, Norwich, UK, 2009).

    Google Scholar 

Download references

Acknowledgements

I am indebted to all former and current co-workers who have contributed substantially to the biopolymer research presented in this Review, and regret that I could not refer to all of the studies that contributed to the bacterial polymer research field owing to space constraints. This work was supported by the Deutsche Forschungsgemeinschaft, Massey University (Palmerston North, New Zealand), PolyBatics Ltd (Palmerston North) and the Foundation of Research, Science and Technology in New Zealand.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Azotobacter vinelandii

Escherichia coli

Pseudomonas aeruginosa

Pseudomonas fluorescens

Ralstonia eutropha

Streptococcus pneumoniae

Protein Data Bank

3B8M

FURTHER INFORMATION

Bernd H. A. Rehm's homepage

Glossary

Biocompatibility

In a biomaterials context, the ability of a material or polymer that is non-toxic to avoid eliciting an immune response.

Two-component signal transduction pathway

A regulatory pathway found in most bacterial and archaeal species that uses phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein.

Quorum sensing

The regulation of bacterial gene expression in response to fluctuations in cell population density. Quorum sensing is mediated by the release of chemical signal molecules (such as homoserine lactones) called autoinducers.

Pseudoplastic

A material that exhibits so- called shear thinning, which is a decrease in viscosity with an increase in the rate of shear stress.

Newtonian fluid

A fluid exhibiting a linear relationship between the shear stress and the strain rate, with the proportionality being the coefficient of viscosity.

Immunogenicity

The potential of a compound to elicit an immune response.

Lipid carrier

An amphipathic molecule, with a hydrophobic polyisoprenoid moiety and a hydrophilic phosphate residue, that is embedded in the cytoplasmic membrane for the transport of sugar repeat units.

Crystallinity

The degree of highly ordered structures inside a polymer. In the polymer context, the glass transition temperature and the melting temperature increase with increasing crystallinity, whereas the elongation-at-break value decreases.

Rock phosphate

A natural inorganic-phosphate resource that, it is assumed, was prebiotically present on earth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehm, B. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8, 578–592 (2010). https://doi.org/10.1038/nrmicro2354

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2354

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology