Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The arrival, establishment and spread of exotic diseases: patterns and predictions

Key Points

  • Six case studies illustrate how the common emergence of exotic vector-borne zoonotic infections depends on the three sequential steps of arrival, establishment and spread.

  • Within the marginally suitable environmental conditions of northern Europe, the re-establishment of malaria following its common importation in travellers is evidently impeded by non-biological factors. High standards of living allow effective control, and modern farming practices have reduced the rate of human biting by mosquitoes.

  • The widespread dispersal of a new vector, Aedes albopictus, largely through trade in used car tyres and other water-carrying goods, is determined by volume of traffic as well as climatic similarity to its original range. The vectorial capacity of this mosquito species for primate-transmitted dengue virus, however, is evidently limited by its feeding behaviour and ecology, usually resulting in much more modest outbreaks than are supported by Aedes aegypti.

  • A mutation that adapts chikungunya virus to transmission by A. albopictus has evidently occurred on three independent occasions that are associated with epidemics in the Indian Ocean islands (for example, La RĂ©union) and West Africa, and a short-lived outbreak in Italy. The potent combination of a vector disseminated by trade and a genetically labile virus repeatedly transported by infected travellers poses particular challenges for predictive risk mapping based on present knowledge.

  • Both West Nile and bluetongue viruses have been catapulted by human agency across major geographical barriers into the New World and northern Europe, respectively, where they found latently hospitable abiotic and biotic environments. The particular feeding behaviour of abundant and diverse American mosquitoes, aided by viral genetic change and high virulence in avian transmission hosts, created a different West Nile virus epidemiology to that observed in the Old World.

  • Since 1998 bluetongue virus has spread northwards into southern Europe, making apparently new use of resident Palaearctic midge vectors.

  • The epidemic of Crimean–Congo haemorrhagic fever in Turkey, still growing since 2002, illustrates that a markedly new epidemiological situation can arise in endemic regions. The cause is unknown, but historically such events elsewhere have been associated with disruption of stable environmental and social conditions through military and civil unrest, leading to greater abundance of, and human exposure to, infected ticks.

  • Predictive models can identify remote areas of similar climatic and host conditions to those in countries of origin of vectors and diseases, and thus can contribute to warnings of future potential emergence to allow public health services to develop preventive or rapid response measures. However, the development of new or more efficient vector pathways (for example, for West Nile and bluetongue viruses), subtle evolutionary changes in the pathogens (for example, in chikungunya virus) or changes in the socioeconomic conditions affecting the degree of human exposure to risk (for example, tick-borne encephalitis and possibly Crimean–Congo haemorrhagic fever) will limit the ability of models to predict the future based on past experience.

Abstract

The impact of human activities on the principles and processes governing the arrival, establishment and spread of exotic pathogens is illustrated by vector-borne diseases such as malaria, dengue, chikungunya, West Nile, bluetongue and Crimean–Congo haemorrhagic fevers. Competent vectors, which are commonly already present in the areas, provide opportunities for infection by exotic pathogens that are introduced by travel and trade. At the same time, the correct combination of environmental conditions (both abiotic and biotic) makes many far-flung parts of the world latently and predictably, but differentially, permissive to persistent transmission cycles. Socioeconomic factors and nutritional status determine human exposure to disease and resistance to infection, respectively, so that disease incidence can vary independently of biological cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of Aedes albopictus at regional administrative levels in Europe and neighbouring countries up until January 2008.
Figure 2: Comparison of climates in world ports.
Figure 3: West Nile virus incidence.
Figure 4: Annual case numbers of Crimean–Congo haemorrhagic fever.

Similar content being viewed by others

References

  1. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008). Meta-analysis of patterns in emerging diseases, but essential data largely tucked into the supplementary information.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, A. D. et al. Imported malaria and high risk groups: observational study using UK surveillance data 1987–2006. BMJ 337, a120 (2008).

    Article  PubMed  Google Scholar 

  4. Doudier, B. et al. Possible autochthonous malaria from Marseille to Minneapolis. Emerg. Infect. Dis. 13, 1236–1238 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuhn, K. G., Campbell-Lendrum, D. H., Armstrong, B. & Davies, C. R. Malaria in Britain: past, present and future. Proc. Natl Acad. Sci. USA 100, 9997–10001 (2003). A quantitative assessment of the various factors that drove malaria from Britain in the past century.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poncon, N., Tran, A., Toty, C., Luty, A. J. F. & Fontenille, D. A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France. Malaria J. 7, 147 (2008).

    Article  Google Scholar 

  7. Poncon, N. et al. Biology and dynamics of potential malaria vectors in southern France. Malaria J. 6, 18 (2007).

    Article  Google Scholar 

  8. Bryant, J. E., Holmes, E. C. & Barrett, A. D. T. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog. 3, e75 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B. & Craig, G. B. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236, 1114–1115 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Reiter, P. & Sprenger, D. The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).

    CAS  PubMed  Google Scholar 

  11. Dalla Pozza, G. L., Romi, R. & Severini, C. Source and spread of Aedes albopictus in the Veneto region of Italy. J. Am. Mosq. Control Assoc. 10, 589–592 (1994).

    CAS  PubMed  Google Scholar 

  12. Scholte, E.-J. et al. First record of Aedes (Stegomyia) albopictus in the Netherlands. Europ. Mosq. Bull. 22, 5–9 (2007).

    Google Scholar 

  13. Rogers, D. J., Wilson, A. J., Hay, S. I. & Graham, A. J. The global distribution of yellow fever and dengue. Adv. Parasitol. 62, 182–220 (2006).

    Google Scholar 

  14. Knudsen, A. B., Romi, R. & Majori, G. Occurrence and spread in Italy of Aedes albopictus, with implications for its introduction into other parts of Europe. J. Am. Mosq. Control Assoc. 12, 177–183 (1996).

    CAS  PubMed  Google Scholar 

  15. Romi, R., Di Luca, M. & Majori, G. Current status of Aedes albopictus and Aedes atropalpus in Italy. J. Am. Mosq. Control Assoc. 15, 425–427 (1999).

    CAS  PubMed  Google Scholar 

  16. Romi, R. Aedes albopictus in Italy: an underestimated health problem. Ann. Inst. Super. Sanita 37, 241–247 (2001).

    CAS  Google Scholar 

  17. Hanson, S. & Craig, G. B. Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 31, 192–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Scholte, E.-J. & Schaffner, F. in Emerging Pests and Vector-borne Diseases in Europe. (eds Takken, W. & Knolls, B. G. J.) 241–260 (Wageningen Academic Publishers, Wageningen, 2007).

    Google Scholar 

  19. Schaffner, F. P. et al. Development of Aedes albopictus risk maps. (European Centre for Disease Control Prevention, Stockholm, 2009)

  20. Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl Acad. Sci. USA 103, 6242–6247 (2006). Combination of satellite-derived environmental data and human activities (shipping traffic), analysed with methods borrowed from molecular phylogenists.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tatem, A. J. & Hay, S. I. Climatic similarity and biological exchange in the worldwide airline transportation network. Proc. R. Soc. Lond. B. 274, 1489–1496 (2007).

    Article  Google Scholar 

  22. Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Rodhain, F. & Rosen, L. in Dengue and Dengue Hemorrhagic Fever. (eds Gubler, D. J. & Kuno, G.) 45–60 (CABI, Wallingford, 1997).

    Google Scholar 

  24. Service, M.W. Aedes albopictus mosquitoes, introduced - Africa. ProMed mail [online], (2003).

  25. Morens, D. M., Folkers, G. K. & Fauci, A. S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gubler, D. J. Aedes albopictus in Africa. Lancet Infect. Dis. 3, 751–752 (2003). An authoritative warning against the common assumption that an increase in one factor (in this case the distribution of the Asian tiger mosquito) will automatically lead to an upsurge in disease.

    Article  PubMed  Google Scholar 

  27. Reiter, P., Fontenille, D. & Paupy, C. Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? Lancet Infect. Dis. 6, 463–464 (2006).

    Article  PubMed  Google Scholar 

  28. Vazeille, M. et al. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 14, e1168 (2007).

    Article  CAS  Google Scholar 

  29. Parola, P. et al. Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg. Infect. Dis. 12, 1493–1499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vazeille, M., Jeannin, C., Martin, E., Schaffner, F. & Failloux, A.-B. Chikungunya: a risk for Mediterranean countries? Acta Tropica 105, 200–202 (2008).

    Article  PubMed  Google Scholar 

  31. Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastorino, B. et al. Epidemic resurgence of chikungunya virus in Democratic Republic of the Congo: identification of a new central African strain. J. Med. Virol. 74, 277–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Laras, K. et al. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans. Roy. Soc. Trop. Med. Hyg. 99, 128–141 (2005).

    Article  PubMed  Google Scholar 

  34. Reiter, P. in Climate Change: the Impacts on the Epidemiology and Control of Animal Diseases (ed. de la Roque, S.) 383–398 (Office International des Epizooties /Word Organisation for Animal Health, Paris, 2008).

    Google Scholar 

  35. Tsetsarkin, K. A., Valandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007). Clear experimental evidence for the potential epidemiological impact of a single mutation in a virus within a complex vector-borne disease system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boelle, P. Y. et al. Investigating transmission in a two-wave epidemic of chikungunya fever, Reunion Island. Vector-Borne Zoon. Dis. 8, 207–217 (2008).

    Article  Google Scholar 

  37. de Lambellerie, X. et al. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol. J. 3, 33 (2008). Neat combination of molecular and geographical phylogeny to reveal evolutionary events behind recent novel epidemics.

    Article  CAS  Google Scholar 

  38. Pfeffer, M. & Loescher, T. Cases of chikungunya imported into Europe. Euro Surveill. 11, 2922 (2006).

    Google Scholar 

  39. Hochedez, P. et al. Chikungunya infection in travelers. Emerg. Infect. Dis. 12, 1565–1567 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lanciotti, R. S. et al. Chikungunya virus in US travelers returning from India, 2006. Emerg. Infect. Dis. 13, 764–767 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beltrame, A. et al. Imported chikungunya infection, Italy. Emerg. Infect. Dis. 13, 1264–1265 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Townson, H. & Nathan, M. B. Resurgence of chikungunya. Trans. Roy. Soc. Trop. Med. Hyg. 102, 308–309 (2008).

    Article  PubMed  Google Scholar 

  43. [No authors listed]. Chikungunya in Italy. (European Centre for Disease Control Prevention, Stockholm, 2007)

  44. Rezza, G. et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Romi, R., Severini, F. & Toma, L. Cold acclimation and overwintering of female Aedes albopictus in Roma. J. Am. Mosq. Control Assoc. 22, 149–151 (2006).

    Article  PubMed  Google Scholar 

  46. Lanciotti, R. S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Hayes, C. G. West Nile virus: Uganda, 1937, to New York City, 1999. Ann. NY Acad. Sci. 951, 25–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Hayes, C. G. et al. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 11, 1167–1173 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Apperson, C. S. et al. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector-Borne Zoon. Dis. 4, 71–82 (2004).

    Article  Google Scholar 

  50. Hamer, G. L. et al. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J. Med. Entomol. 45, 125–128 (2008).

    Article  PubMed  Google Scholar 

  51. Kilpatrick, M. et al. West Nile virus risk assessment and the bridge vector paradigm. Emerg. Infect. Dis. 11, 425–429 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Medlock, J. M., Snow, K. R. & Leach, S. Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors. Med. Vet. Entomol. 19, 2–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kramer, L. D., Styer, L. M. & Ebel, G. D. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 53, 61–81 (2008). Comprehensive review of genetic, biological and environmental factors behind the emergence of WNV in North America within its global context.

    Article  CAS  PubMed  Google Scholar 

  54. Davis, C. T. et al. Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342, 252–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ebel, G. D., Carricaburu, J. E., Young, D. S., Bernard, K. A. & Kramer, L. D. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am. J. Trop. Med. Hyg. 71, 493–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Snapinn, K. W. et al. Declining growth rate of West Nile virus in North America. J. Virol. 81, 2531–2534 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Taylor, R. M., Work, T. H., Hurlbut, H. S. & Rizk, F. A study of the ecology of West Nile virus in Egypt. Am. J. Trop. Med. Hyg. 5, 579–620 (1956).

    Article  PubMed  Google Scholar 

  58. Hubalek, Z. & Halouzka, J. West Nile virus - a reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 5, 643–650 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsai, T. F., Popovici, F., Cernescu, C., Campbell, G. L. & Nedelcu, N. I. West Nile encephalitis epidemic in southeastern Romania. Lancet 352, 767–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Savage, H. M. et al. Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes. Am. J. Trop. Med. Hyg. 61, 600–611 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Platonov, A. E. et al. Outbreak of West Nile virus infection, Volgograd region, Russia, 1999. Emerg. Infect. Dis. 7, 128–132 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller, B. M. et al. First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley Province, Kenya. Am. J. Trop. Med. Hyg. 62, 240–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Nasci, R. S. et al. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg. Infect. Dis. 7, 742–744 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chevalier, V. et al. Serological assessment of West Nile fever virus activity in the pastoral system of Ferlo, Senegal. Ann. NY Acad. Sci. 1081, 216–225 (2006).

    Article  PubMed  Google Scholar 

  65. Steele, K. E. et al. Pathology of fatal West Nile virus infections in native and exotic birds during the 1999 outbreak in New York City, New York. Vet. Pathol. 37, 208–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Komar, N. et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg. Infect. Dis. 9, 311–322 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dawson, J. R. et al. Crow deaths caused by West Nile virus during winter. Emerg. Infect. Dis. 13, 1912–1914 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miller, D. L. et al. West Nile virus in farmed alligators. Emerg. Infect. Dis. 9, 794–799 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kostiukov, M. A., Alekseev, A. N., Bulychev, V. P. & Gordeeva, Z. E. Experimental evidence for infection of Culex pipiens L. mosquitoes by West Nile fever virus from Rana ridibunda Pallas and its transmission by bites (in Russian). Med. Parazitol. Parazit. Bol. 6, 76–78 (1986).

    Google Scholar 

  70. Sbrana, E. et al. Oral transmission of West Nile virus in a hamster model. Am. J. Trop. Med. Hyg. 72, 325–329 (2005).

    Article  Google Scholar 

  71. Bakonyi, T., Hubalek, Z., Rudolf, I. & Nowotny, N. Novel flavivirus or new lineage of West Nile virus, Central Europe. Emerg. Infect. Dis. 11, 225–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hay, S. I., Graham, A. J. & Rogers, D. J. (eds) Global Mapping of Infectious Diseases: Methods, Examples and Emerging Applications. (Academic Press, London, 2006). Clear exposition of methods to describe, explain and predict global patterns of infectious disease distributions, plus case studies on viral and parasitic infections.

    Google Scholar 

  73. Purse, B. V., Brown, H. E., Harrup, L., Mertens, P. P. C. & Rogers, D. J. in Climate Change: the Impacts on the Epidemiology and Control of Animal Diseases (ed. de la Roque, S.) (Office International des Epizooties /Word Organisation for Animal Health, Paris, 2008). Environmental changes and biological processes behind the northward spread of bluetongue virus into Europe, 1998–2005.

    Google Scholar 

  74. Mellor, P. S. & Boorman, J. The transmission and geographical spread of African horse sickness and bluetongue viruses. Ann. Trop. Med. Parasitol. 89, 1–15 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Purse, B. V. et al. Climate change and the recent emergence of bluetongue in Europe. Nature Rev. Microbiol. 3, 171–181 (2005).

    Article  CAS  Google Scholar 

  76. De Liberato, C., Purse, B. V., Goffredo, M., Scholl, F. & Scaramozzino, P. Geographical and seasonal distribution of the bluetongue virus vector, Culicoides imicola, in central Italy. Med. Vet. Entomol. 17, 388–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Torino, A., Caracappa, S., Mellor, P. S., Baylis, M. & Purse, B. V. Spatial distribution of bluetongue virus and its Culicoides vectors in Sicily. Med. Vet. Entomol. 18, 81–89 (2004).

    Article  Google Scholar 

  78. Purse, B. V. et al. Incriminating bluetongue virus vectors with climate envelope models. J. Appl. Ecol. 44, 1231–1242 (2007).

    Article  Google Scholar 

  79. Mellor, P. S., Carpenter, S. R., Harrup, L., Baylis, M. & Mertens, P. P. C. Bluetongue in Europe and the Mediterranean basin: history of occurrence prior to 2006. Prev. Vet. Med. 87, 4–20 (2008). Essential catalogue of bluetongue outbreaks in southern Europe, with plausible explanations.

    Article  PubMed  Google Scholar 

  80. Ducheyne, E. et al. Quantifying the wind dispersal of Culicoides species in Greece and Bulgaria. Geospat. Health 2, 177–189 (2007).

    Article  Google Scholar 

  81. Mellor, P. S., Rawlings, P., Baylis, M. & Welby, M. P. Effect of temperature on African horse sickness virus in Culicoides. Arch. Virol. 14, 155–163 (1998).

    CAS  Google Scholar 

  82. Paweska, J. T., Venter, G. J. & Mellor, P. S. Vector competence of South African Culicoides species for bluetingue virus serotype 1 (BTV-1) with special reference to the effect of temperature on the rate of virus replication in C. imicola and C. bolitinos. Med. Vet. Entomol. 16, 10–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Wittman, E. J., Mellor, P. S. & Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonoresis. Med. Vet. Entomol. 16, 147–156 (2002).

    Article  Google Scholar 

  84. Mintiens, K. et al. Possible routes of intoduction of bluetongue virus serotype 8 into the epicentre of the 2006 epidemic in north-western Europe. Prev. Vet. Med. 87, 131–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Gloster, J., Burgin, L., Witham, C., Athanassiadou, M. & Mellor, P. S. Bluetongue in the United Kingdom and northern Europe in 2007 and key issues for 2008. Vet. Rec. 162, 298–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Burgin, L., Gloster, J. & Mellor, P. S. Why were there no outbreaks of bluetongue in the UK during 2008? Vet. Rec. 164, 384–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Hendrickx, G. et al. A wind density model to quantify the airborne spread of Culicoides species during north-western Europe bluetongue epidemic, 2006. Prev. Vet. Med. 87, 162–181 (2008).

    Article  PubMed  Google Scholar 

  88. Wilson, A., Darpel, K. & Mellor, P. S. Where does bluetongue virus sleep in the winter? PLoS Biol. 6, e210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takamatsu, H. et al. A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. J. Gen. Virol. 84, 227–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. De Clercq, K. et al. Transplacental bluetongue infection in cattle. Vet. Rec. 162, 564 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Christova, I. et al. Crimean-Congo hemorrhagic fever, southwestern Bulgaria. Emerg. Infect. Dis. 15, 983–985 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hoogstraal, H. The epidemiology of tick borne Crimean-Congo hemorrhagic fever in Asia, Europe and Africa. J. Med. Entomol. 15, 307–417 (1979).

    Article  CAS  PubMed  Google Scholar 

  93. Randolph, S. E. & Rogers, D. J. in Crimean-Congo Hemorrhagic Fever (eds Ergönül, O. & Whitehouse, C. A.) 167–186 (Springer, Dordecht, 2007).

    Book  Google Scholar 

  94. Vatansever, Z., Uzun, R., Estrada-Pena, A. & Ergonul, O. in Crimean-Congo Hemorrhagic Fever: A Global Perspective. (eds Ergönül, O. & Whitehouse, C. A.) 59–74 (Springer, Dordecht, 2007).

    Book  Google Scholar 

  95. Gunes, T. et al. Crimean-Congo hemorrhagic fever virus in high risk population, Turkey. Emerg. Infect. Dis. 15, 461–464 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ergönül, O. Crimean-Congo haemorrhagic fever. Lancet Infect. Dis. 6, 203–214 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Karti, S. S., Odabasi, Z. & Korten, V. Crimean-Congo hemorrhagic fever in Turkey. Emerg. Infect. Dis. 10, 1379–1384 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Avsic-Zupanc, T. in Crimean-Congo Hemorrhagic Fever: A Global Perspective. (eds Ergonul, O. & Whitehouse, C. A.) 75–88 (Springer, Dordecht, 2007).

    Book  Google Scholar 

  99. Ergönül, O. Treatment of Crimean Congo hemorrhagic fever. Antiviral Res. 78, 125–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Estrada-Peña, A. et al. Modeling the spatial distribution of Crimean-Congo haemorrhagic fever outbreak in Turkey. Vector-Borne Zoon. Dis. 7, 667–678 (2007).

    Article  Google Scholar 

  101. Midilli, K. et al. Imported Crimean-Congo hemorrhagic fever cases in Istanbul. BMC Infect. Dis. 7, 54 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Randolph, S. E. & Šumilo, D. in Emerging Pests and Vector-borne Disease in Europe (eds Takken, W. & Knols, B. G. J.) 187–206 (Wageningen Academic Publishers, Wageningen, 2007).

    Google Scholar 

  103. Ergönül, O., Akgunduz, S., Kocaman, I., Vatansever, Z. & Korten, V. Changes in temperature and the Crimean Congo haemorrhagic fever outbreak in Turkey. Clin. Microbiol. Infect. 11 (Suppl. 2), 360 (2005).

    Google Scholar 

  104. Šumilo, D. et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev. Med. Virol. 18, 81–95 (2008). Extensive detailed data making a compelling case for the role of human activities, driven by socioeconomic consequences of political reform, in tick-borne disease emergence in Europe.

    Article  PubMed  Google Scholar 

  105. Šumilo, D. et al. Behavioural responses to perceived risk of tick-borne encephalitis: vaccination and avoidance in the Baltics and Slovenia. Vaccine 26, 2580–2588 (2008).

    Article  PubMed  Google Scholar 

  106. Randolph, S. E. Tick-borne encephalitis incidence in Central and Eastern Europe: consequences of political transition. Micr. Infect. 10, 209–216 (2008).

    Article  Google Scholar 

  107. Elith, J. et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151 (2006). Comparative review to help make sense of the burgeoning range of statistical methods increasingly used for species distribution modelling.

    Article  Google Scholar 

  108. Capela, R. et al. Spatial distribution of Culicoides species in Portugal in relation to the transmission of African horse sickness and bluetongue viruses. Med. Vet. Entomol. 17, 165–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Tatem, A. J. et al. Prediction of bluetongue vector distribution in Europe and North Africa using satellite imagery. Vet. Microbiol. 97, 13–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. [No authors listed.] Focus on Crimean–Congo haemorrhagic fever. Arbo-zoonet newletter 2 [online], (2008).

Download references

Acknowledgements

S.E.R. is grateful to the organizers of the Keystone Symposium in Bangkok in October 2008, where her lecture triggered this invited review. S.E.R. is partially supported by the European Union grant GOCE-2003-010,284 EDEN; this paper is catalogued by the EDEN Steering Committee as EDEN0156 (http://www.eden-fp6project.net). The contents are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Randolph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 | Figure 4

Bluetongue virus distribution in Europe, a) predicted in 2002 according to methods described in text (pale green, zero/low abundance; yellow, intermediate abundance; dark green, high abundance; grey, no predictions), and b) observed. (PDF 1242 kb)

Related links

Related links

DATABASES

Entrez Genome

bluetongue virus

chikungunya virus

dengue virus

West Nile virus

Entrez Genome Project

Aedes aegypti

Aedes albopictus

Plasmodium falciparum

Plasmodium vivax

FURTHER INFORMATION

David Rogers' homepage

Sarah E. Randolph's homepage

UPI news article

ProMED mail website

Centre for Disease Control website

Glossary

Zoonosis

An infectious agent that is maintained by transmission among wildlife hosts and that only infects humans by their incidental contact with infected wild hosts or vectors. No human to human transmission is possible unless the pathogen evolves to achieve this.

Anthropophilic

Showing preferences for humans. In this case, anthropophilic refers to a vector's feeding behaviour.

Catholic feeding behaviour

Feeding from a wide range of hosts, typically owing to opportunism rather than specialization.

Sylvatic cycle

Cycle of infectious agent maintained among wild animals, especially those living in forests.

Transovarially

An infectious agent being transmitted vertically from female to the next generation through the eggs.

Enzootic

When a zoonosis is habitually present in a wildlife population, rather than appearing only periodically as an epidemic in human populations.

Ornithophilic

Showing preferences for birds. In this case ornithophilic refers to the vectors' feeding behaviour.

Patent infection

An infection in which the infectious agent is shed from the patient.

Serotypes

A particular strain of a pathogen defined by its stimulation of a specific immune response.

Lagomorph

An animal belonging to an order of mammals that includes rabbits and hares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randolph, S., Rogers, D. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 8, 361–371 (2010). https://doi.org/10.1038/nrmicro2336

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2336

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology