Key Points
-
Giardia intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, but the disease mechanisms have been poorly understood until recently.
-
Giardia spp. are some of the most divergent eukaryotes examined to date and provide unique opportunities for gaining basic insights into key pathways that characterize eukaryotic cells and also for identifying new molecular mechanisms.
-
Cell differentiation in Giardia spp. involves two major developmental transitions: from the ingested, dormant cyst via the excyzoite to trophozoites, in a process known as excystation, and from the motile, replicating trophozoite back to the infective cyst, in a process known as encystation.
-
Mitosomes in Giardia spp. are elongated, double-membraned organelles that are related to mitochondria, and their only known function is in the assembly of Fe–S clusters.
-
Giardia spp., like all diplomonads, have two nuclei. These nuclei have been shown to be equivalent in size and in the amount of DNA that they contain, and both are transcriptionally active.
-
Analyses of Giardia spp. genomes indicate that these organisms encode rudimentary forms of many cellular processes, with fewer subunits present in simplified cellular machineries, and have a limited metabolic repertoire with many bacterial-like enzymes that were introduced by horizontal gene transfer.
-
The adhesive disc and the four flagella of the pathogen, together with differentiation and antigenic variation of the variant-specific surface proteins (VSPs), are the major virulence factors identified to date for Giardia spp. Epigenetic mechanisms, microRNAs and RNA interference have been shown to be important in the regulation of vsp gene expression.
-
Several mechanisms (including epithelial-barrier dysfunction, apoptosis, diffuse shortening of microvilli, hypersecretion of Cl− and inhibition of brush-border enzymes) have been proposed to be important for the induction of symptoms during giardial infection, and the cause of giardiasis is probably multifactorial.
Abstract
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A potential role for Giardia chaperone protein GdDnaJ in regulating Giardia proliferation and Giardiavirus replication
Parasites & Vectors Open Access 25 May 2023
-
Giardia hinders growth by disrupting nutrient metabolism independent of inflammatory enteropathy
Nature Communications Open Access 18 May 2023
-
High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis
Scientific Reports Open Access 22 September 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Lane, S. & Lloyd, D. Current trends in research into the waterborne parasite Giardia. Crit. Rev. Microbiol. 28, 123–147 (2002).
O'Handley, R. M., Buret, A. G., McAllister, T. A., Jelinski, M. & Olson, M. E. Giardiasis in dairy calves: effects of fenbendazole treatment on intestinal structure and function. Int. J. Parasitol. 31, 73–79 (2001).
Rendtorff, R. C. The experimental transmission of human intestinal protozoan parasites. II. Giardia lamblia cysts given in capsules. Am. J. Hyg. 59, 209–220 (1954).
Farthing, M. J. The molecular pathogenesis of giardiasis. J. Pediatr. Gastroenterol. Nutr. 24, 79–88 (1997).
Buret, A. G. Mechanisms of epithelial dysfunction in giardiasis. Gut 56, 316–317 (2007).
Ortega, Y. R. & Adam, R. D. Giardia: overview and update. Clin. Infect. Dis. 25, 545–549 (1997).
Hanevik, K., Dizdar, V., Langeland, N. & Hausken, T. Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterol. 9, 27 (2009).
Svard, S. G., Hagblom, P. & Palm, J. E. Giardia lamblia – a model organism for eukaryotic cell differentiation. FEMS Microbiol. Lett. 218, 3–7 (2003).
Simpson, A. G. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int. J. Syst. Evol. Microbiol. 53, 1759–1777 (2003).
Lauwaet, T., Davids, B. J., Reiner, D. S. & Gillin, F. D. Encystation of Giardia lamblia: a model for other parasites. Curr. Opin. Microbiol. 10, 554–559 (2007).
Paget, T. A., Macechko, P. T. & Jarroll, E. L. Metabolic changes in Giardia intestinalis during differentiation. J. Parasitol. 84, 222–226 (1998).
Hetsko, M. L. et al. Cellular and transcriptional changes during excystation of Giardia lamblia in vitro. Exp. Parasitol. 88, 172–183 (1998).
Buchel, L. A., Gorenflot, A., Chochillon, C., Savel, J. & Gobert, J. G. In vitro excystation of Giardia from humans: a scanning electron microscopy study. J. Parasitol. 73, 487–493 (1987).
Ward, W. et al. A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89, 437–444 (1997).
Bernander, R., Palm, J. E. & Svard, S. G. Genome ploidy in different stages of the Giardia lamblia life cycle. Cell. Microbiol. 3, 55–62 (2001). The first demonstration of ploidy changes during the compete giardial life cycle.
Palm, D. et al. Developmental changes in the adhesive disk during Giardia differentiation. Mol. Biochem. Parasitol. 141, 199–207 (2005).
Slavin, I. et al. Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol. Biochem. Parasitol. 122, 95–98 (2002).
Reiner, D. S. et al. Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J. Biol. Chem. 278, 2533–2540 (2003).
Lauwaet, T. et al. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol. Biochem. Parasitol. 152, 80–89 (2007).
Abel, E. S. et al. Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. J. Biol. Chem. 276, 10320–10329 (2001).
Elmendorf, H. G., Dawson, S. C. & McCaffery, J. M. The cytoskeleton of Giardia lamblia. Int. J. Parasitol. 33, 3–28 (2003).
Weiland, M. E., McArthur, A. G., Morrison, H. G., Sogin, M. L. & Svard, S. G. Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int. J. Parasitol. 35, 617–626 (2005).
Adam, R. D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 14, 447–475 (2001).
Sheffield, H. G. & Bjorvatn, B. Ultrastructure of the cyst of Giardia lamblia. Am. J. Trop. Med. Hyg. 26, 23–30 (1977).
Chavez-Munguia, B. et al. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol. Res. 100, 1169–1175 (2007).
Erlandsen, S. L., Macechko, P. T., van Keulen, H. & Jarroll, E. L. Formation of the Giardia cyst wall: studies on extracellular assembly using immunogold labeling and high resolution field emission SEM. J. Eukaryot. Microbiol. 43, 416–429 (1996).
Mowatt, M. R. et al. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol. Microbiol. 15, 955–963 (1995). The first cloning and characterization of an encystation-specific gene.
Lujan, H. D., Mowatt, M. R., Conrad, J. T., Bowers, B. & Nash, T. E. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J. Biol. Chem. 270, 29307–29313 (1995).
Sun, C. H., McCaffery, J. M., Reiner, D. S. & Gillin, F. D. Mining the Giardia lamblia genome for new cyst wall proteins. J. Biol. Chem. 278, 21701–21708 (2003).
Davids, B. J. et al. A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS ONE 1, e44 (2006).
Nash, T. E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002).
Gerwig, G. J. et al. The Giardia intestinalis filamentous cyst wall contains a novel β(1–3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12, 499–505 (2002).
Knodler, L. A., Svard, S. G., Silberman, J. D., Davids, B. J. & Gillin, F. D. Developmental gene regulation in Giardia lamblia: first evidence for an encystation-specific promoter and differential 5′ mRNA processing. Mol. Microbiol. 34, 327–340 (1999). A description of the first cloning of an enzyme involved in the cyst wall sugar synthesis pathway and the characterization of an encystation-specific promoter.
Karr, C. D. & Jarroll, E. L. Cyst wall synthase: N-acetylgalactosaminyltransferase activity is induced to form the novel N-acetylgalactosamine polysaccharide in the Giardia cyst wall. Microbiology 150, 1237–1243 (2004).
Davis-Hayman, S. R., Hayman, J. R. & Nash, T. E. Encystation-specific regulation of the cyst wall protein 2 gene in Giardia lamblia by multiple cis-acting elements. Int. J. Parasitol. 33, 1005–1012 (2003).
Sun, C. H., Palm, D., McArthur, A. G., Svard, S. G. & Gillin, F. D. A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol. Microbiol. 46, 971–984 (2002).
Huang, Y. C. et al. Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J. Biol. Chem. 283, 31021–31029 (2008).
Sun, C. H., Su, L. H. & Gillin, F. D. Novel plant-GARP-like transcription factors in Giardia lamblia. Mol. Biochem. Parasitol. 146, 45–57 (2006).
Wang, C. H., Su, L. H. & Sun, C. H. A novel ARID/Bright-like protein involved in transcriptional activation of cyst wall protein 1 gene in Giardia lamblia. J. Biol. Chem. 282, 8905–8914 (2007).
Pan, Y. J., Cho, C. C., Kao, Y. Y. & Sun, C. H. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J. Biol. Chem. 284, 17975–17988 (2009).
Boheler, K. R. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J. Cell. Physiol. 221, 10–17 (2009).
Reiner, D. S., Douglas, H. & Gillin, F. D. Identification and localization of cyst-specific antigens of Giardia lamblia. Infect. Immun. 57, 963–968 (1989).
Marti, M. & Hehl, A. B. Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol. 19, 440–446 (2003).
Stefanic, S. et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J. Cell Sci. 122, 2846–2856 (2009).
Gaechter, V., Schraner, E., Wild, P. & Hehl, A. B. The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9, 57–71 (2008).
Marti, M. et al. An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. J. Biol. Chem. 278, 24837–24848 (2003).
Elias, E. V. et al. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J. Biol. Chem. 283, 35996–36010 (2008).
Knodler, L. A. et al. Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J. Biol. Chem. 274, 29805–29811 (1999).
DuBois, K. N. et al. Identification of the major cysteine protease of Giardia and its role in encystation. J. Biol. Chem. 283, 18024–18031 (2008).
Touz, M. C. et al. The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J. Biol. Chem. 277, 8474–8481 (2002).
Touz, M. C., Gottig, N., Nash, T. E. & Lujan, H. D. Identification and characterization of a novel secretory granule calcium-binding protein from the early branching eukaryote Giardia lamblia. J. Biol. Chem. 277, 50557–50563 (2002).
Stefanic, S., Palm, D., Svard, S. G. & Hehl, A. B. Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J. Biol. Chem. 281, 7595–7604 (2006).
Roger, A. J. et al. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl Acad. Sci. USA 95, 229–234 (1998). This article describes the identification of the first mitochondrial gene in a Giardia species.
Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172–176 (2003). This study identifies the mitosome, which is a reduced mitochondrion lacking DNA and many typical mitochondrial functions.
Regoes, A. et al. Protein import, replication, and inheritance of a vestigial mitochondrion. J. Biol. Chem. 280, 30557–30563 (2005).
Hehl, A. B., Regos, A., Schraner, E. & Schneider, A. Bax function in the absence of mitochondria in the primitive protozoan Giardia lamblia. PLoS ONE 2, e488 (2007).
Smid, O. et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 4, e1000243 (2008).
Dolezal, P. et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10924–10929 (2005).
Rada, P. et al. The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis. Eukaryot. Cell 8, 1584–1591 (2009).
Dolezal, P., Likic, V., Tachezy, J. & Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006).
Dagley, M. J. et al. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol. Biol. Evol. 26, 1941–1947 (2009).
Caccio, S. M. & Ryan, U. Molecular epidemiology of giardiasis. Mol. Biochem. Parasitol. 160, 75–80 (2008).
Monis, P. T., Caccio, S. M. & Thompson, R. C. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 25, 93–100 (2009).
Kabnick, K. S. & Peattie, D. A. In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J. Cell. Sci. 95, 353–360 (1990).
Yu, L. Z., Birky, C. W. Jr & Adam, R. D. The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot. Cell 1, 191–199 (2002).
Tumova, P., Hofstetrova, K., Nohynkova, E., Hovorka, O. & Kral, J. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 116, 65–78 (2007).
Benchimol, M. Giardia lamblia: behavior of the nuclear envelope. Parasitol. Res. 94, 254–264 (2004).
Jimenez-Garcia, L. F. et al. Identification of nucleoli in the early branching protist Giardia duodenalis. Int. J. Parasitol. 38, 1297–1304 (2008).
Saraiya, A. A. & Wang, C. C. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 4, e1000224 (2008). The first publication showing that snoRNAs can be miRNA precursors.
Sagolla, M. S., Dawson, S. C., Mancuso, J. J. & Cande, W. Z. Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J. Cell Sci. 119, 4889–4900 (2006).
Reiner, D. S. et al. Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. Int. J. Parasitol. 38, 935–944 (2008).
Morrison, H. G. et al. Genomic minimalism in the early diverging intestinal parasite G iardia lamblia. Science 317, 1921–1926 (2007). Sequencing of the first giardial genome, showing that G. intestinalis has reduced cellular complexes.
Franzen, O. et al. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 5, e1000560 (2009). The first example of de novo 454 sequencing of a protozoan parasite, identifying genomic differences between giardial assemblage A and assemblage B isolates that suggest that they are different species.
Byrd, L. G., Conrad, J. T. & Nash, T. E. Giardia lamblia infections in adult mice. Infect. Immun. 62, 3583–3585 (1994).
Nash, T. E., Herrington, D. A., Losonsky, G. A. & Levine, M. M. Experimental human infections with Giardia lamblia. J. Infect. Dis. 156, 974–984 (1987). A classic paper that uses Koch's postulate to show that G. intestinalis is a true pathogen.
Cooper, M. A., Adam, R. D., Worobey, M. & Sterling, C. R. Population genetics provides evidence for recombination in Giardia. Curr. Biol. 17, 1984–1988 (2007).
Lebbad, M. et al. Dominance of Giardia assemblage B in Leon, Nicaragua. Acta Trop. 106, 44–53 (2008).
Ramesh, M. A., Malik, S. B. & Logsdon, J. M. Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).
Malik, S. B., Pightling, A. W., Stefaniak, L. M., Schurko, A. M. & Logsdon, J. M. Jr. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE 3, e2879 (2008).
Logsdon, J. M. Jr. Evolutionary genetics: sex happens in Giardia. Curr. Biol. 18, R66–R68 (2008).
Poxleitner, M. K. et al. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319, 1530–1533 (2008). A paper introducing the concept of diplomixis: the transfer of DNA between the two nuclei in Giardia spp.
Roxstrom-Lindquist, K., Palm, D., Reiner, D., Ringqvist, E. & Svard, S. G. Giardia immunity — an update. Trends Parasitol. 22, 26–31 (2006).
Prucca, C. G. & Lujan, H. D. Antigenic variation in Giardia lamblia. Cell. Microbiol. 11, 1706–1715 (2009).
Adam, R. D. et al. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J. Exp. Med. 167, 109–118 (1988).
Aggarwal, A. & Nash, T. E. Antigenic variation of Giardia lamblia in vivo. Infect. Immun. 56, 1420–1423 (1988).
Gillin, F. D. et al. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc. Natl Acad. Sci. USA 87, 4463–4467 (1990).
Svard, S. G., Meng, T. C., Hetsko, M. L., McCaffery, J. M. & Gillin, F. D. Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol. Microbiol. 30, 979–989 (1998).
Nash, T. E., Banks, S. M., Alling, D. W., Merritt, J. W. Jr & Conrad, J. T. Frequency of variant antigens in Giardia lamblia. Exp. Parasitol. 71, 415–421 (1990).
Singer, S. M., Elmendorf, H. G., Conrad, J. T. & Nash, T. E. Biological selection of variant-specific surface proteins in Giardia lamblia. J. Infect. Dis. 183, 119–124 (2001).
Muller, J., Sterk, M., Hemphill, A. & Muller, N. Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. J. Antimicrob. Chemother. 60, 280–287 (2007).
Hiltpold, A., Frey, M., Hulsmeier, A. & Kohler, P. Glycosylation and palmitoylation are common modifications of Giardia variant surface proteins. Mol. Biochem. Parasitol. 109, 61–65 (2000).
Touz, M. C., Conrad, J. T. & Nash, T. E. A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol. Microbiol. 58, 999–1011 (2005).
Touz, M. C. et al. Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. J. Cell Sci. 121, 2930–2938 (2008).
Lopez-Rubio, J. J., Riviere, L. & Scherf, A. Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr. Opin. Microbiol. 10, 560–568 (2007).
Kulakova, L., Singer, S. M., Conrad, J. & Nash, T. E. Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol. Microbiol. 61, 1533–1542 (2006).
Prucca, C. G. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008). This article shows the importance of RNAi in the regulation of antigenic variation.
Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006). The determination of the protein structure of a Dicer enzyme.
Andersen, Y. S., Gillin, F. D. & Eckmann, L. Adaptive immunity-dependent intestinal hypermotility contributes to host defense against Giardia spp. Infect. Immun. 74, 2473–2476 (2006).
Li, E., Zhao, A., Shea-Donohue, T. & Singer, S. M. Mast cell-mediated changes in smooth muscle contractility during mouse giardiasis. Infect. Immun. 75, 4514–4518 (2007).
Roxstrom-Lindquist, K., Ringqvist, E., Palm, D. & Svard, S. Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. Infect. Immun. 73, 8204–8208 (2005).
Troeger, H. et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56, 328–335 (2007). A study of human patients with chronic G. intestinalis infection, revealing the importance of apoptosis and a disrupted epithelial barrier in the induction of disease.
Yu, L. C. et al. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int. J. Parasitol. 38, 923–934 (2008).
Chin, A. C. et al. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect. Immun. 70, 3673–3680 (2002).
Panaro, M. A. et al. Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol. Med. Microbiol. 51, 302–309 (2007).
Ringqvist, E. et al. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol. Biochem. Parasitol. 159, 85–91 (2008).
Rodriguez-Fuentes, G. B. et al. Giardia duodenalis: analysis of secreted proteases upon trophozoite-epithelial cell interaction in vitro. Mem. Inst. Oswaldo Cruz 101, 693–696 (2006).
Teoh, D. A., Kamieniecki, D., Pang, G. & Buret, A. G. Giardia lamblia rearranges F-actin and α-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. J. Parasitol. 86, 800–806 (2000).
Buret, A. G., Mitchell, K., Muench, D. G. & Scott, K. G. Giardia lamblia disrupts tight junctional ZO-1 and increases permeability in non-transformed human small intestinal epithelial monolayers: effects of epidermal growth factor. Parasitology 125, 11–19 (2002).
Scott, K. G., Meddings, J. B., Kirk, D. R., Lees-Miller, S. P. & Buret, A. G. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 123, 1179–1190 (2002).
Oberhuber, G., Kastner, N. & Stolte, M. Giardiasis: a histologic analysis of 567 cases. Scand. J. Gastroenterol. 32, 48–51 (1997).
Scott, K. G., Yu, L. C. & Buret, A. G. Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect. Immun. 72, 3536–3542 (2004).
Cevallos, A., Carnaby, S., James, M. & Farthing, J. G. Small intestinal injury in a neonatal rat model of giardiasis is strain dependent. Gastroenterology 109, 766–773 (1995).
Chavez, B., Knaippe, F., Gonzalez-Mariscal, L. & Martinez-Palomo, A. Giardia lamblia: electrophysiology and ultrastructure of cytopathology in cultured epithelial cells. Exp. Parasitol. 61, 379–389 (1986).
Buret, A., Hardin, J. A., Olson, M. E. & Gall, D. G. Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology 103, 506–513 (1992).
Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A. & Peattie, D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243, 75–77 (1989). An early molecular study suggesting an early divergence of the genus Giardia and sparking basic research in Giardia spp.
Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).
Simpson, A. G., Inagaki, Y. & Roger, A. J. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Mol. Biol. Evol. 23, 615–625 (2006).
Nixon, J. E. et al. A spliceosomal intron in Giardia lamblia. Proc. Natl Acad. Sci. USA 99, 3701–3705 (2002).
Andersson, J. O. et al. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8, 51 (2007).
Weiland, M. E., Palm, J. E., Griffiths, W. J., McCaffery, J. M. & Svard, S. G. Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int. J. Parasitol. 33, 1341–1351 (2003).
Acknowledgements
S.G.S. is supported by the Swedish Research Council VR–M, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) and the Swedish International Development Cooperation Agency (SIDA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez Genome Project
G. intestinalis str. GS clone H7
G. intestinalis str. WB clone 6
FURTHER INFORMATION
Glossary
- Cyst
-
The resistant, transmissive form of the giardial parasite.
- Relic organelle
-
A cellular organelle that has evolved into a reduced form with fewer or novel functions.
- Excyzoite
-
A short-lived stage of the giardial parasite that initiates infection.
- Trophozoite
-
The replicating, disease-causing form of the giardial parasite.
- Fe–S cluster
-
An essential cofactor of proteins that are involved in catalysis and electron transport. A cluster contains a sulphide-linked di-, tri- or tetra-iron centre that can exist in one of several oxidation states.
- Allelic sequence heterozygosity
-
The sequence difference between different alleles of the same gene.
- Intrinsic pathway
-
An apoptotic pathway in which the crucial step is the permeabilization of the outer mitochondrial membrane.
- Extrinsic pathway
-
An apoptotic pathway that is mediated by the binding of an extracellular ligand to a transmembrane receptor.
Rights and permissions
About this article
Cite this article
Ankarklev, J., Jerlström-Hultqvist, J., Ringqvist, E. et al. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8, 413–422 (2010). https://doi.org/10.1038/nrmicro2317
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2317
This article is cited by
-
A potential role for Giardia chaperone protein GdDnaJ in regulating Giardia proliferation and Giardiavirus replication
Parasites & Vectors (2023)
-
Giardia hinders growth by disrupting nutrient metabolism independent of inflammatory enteropathy
Nature Communications (2023)
-
Prevalence and multilocus genotyping of Giardia duodenalis in zoo animals in three cities in China
Parasitology Research (2022)
-
Nanoarchitecture of the ventral disc of Giardia intestinalis as revealed by high-resolution scanning electron microscopy and helium ion microscopy
Histochemistry and Cell Biology (2022)
-
High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis
Scientific Reports (2021)