Abstract
Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the 'wild'. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The in vivo measurement of replication fork velocity and pausing by lag-time analysis
Nature Communications Open Access 30 March 2023
-
Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift
Nature Communications Open Access 28 January 2023
-
Escherichia coli cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production
Microbial Cell Factories Open Access 21 June 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Fantes, P. & Nurse, P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp. Cell Res. 107, 377–386 (1977).
Schaechter, M., Maaloe, O. & Kjeldgaard, N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).
Johnson, A. & O'Donnell, M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74, 283–315 (2005).
Harry, E., Monahan, L. & Thompson, L. Bacterial cell division: the mechanism and its precison. Int. Rev. Cytol. 253, 27–94 (2006).
Cooper, S. & Helmstetter, C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31, 519–540 (1968).
Yoshikawa, H., O'Sullivan, A. & Sueoka, N. Sequential replication of the Bacillus subtilis chromosome, III. Regulation of initiation. Proc. Natl Acad. Sci. USA 52, 973–980 (1964).
Nordstrom, K., Bernander, R. & Dasgupta, S. The Escherichia coli cell cycle: one cycle or multiple independent processes that are co-ordinated? Mol. Microbiol. 5, 769–774 (1991).
Boye, E. & Nordstrom, K. Coupling the cell cycle to cell growth. EMBO Rep. 4, 757–760 (2003).
Laub, M. T., Shapiro, L. & McAdams, H. H. Systems biology of Caulobacter. Annu. Rev. Genet. 41, 429–441 (2007).
Zyskind, J. W. & Smith, D. W. DNA replication, the bacterial cell cycle, and cell growth. Cell 69, 5–8 (1992).
Kaguni, J. M. DnaA: controlling the initiation of bacterial DNA replication and more. Annu. Rev. Microbiol. 60, 351–375 (2006).
Mott, M. L. & Berger, J. M. DNA replication initiation: mechanisms and regulation in bacteria. Nature Rev. Microbiol. 5, 343–354 (2007).
Xu, Y. C. & Bremer, H. Chromosome replication in Escherichia coli induced by oversupply of DnaA. Mol. Gen. Genet. 211, 138–142 (1988).
Skarstad, K., Lobner-Olesen, A., Atlung, T., von Meyenburg, K. & Boye, E. Initiation of DNA replication in Escherichia coli after overproduction of the DnaA protein. Mol. Gen. Genet. 218, 50–56 (1989).
Ogura, Y., Imai, Y., Ogasawara, N. & Moriya, S. Autoregulation of the dnaA-dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus subtilis. J. Bacteriol. 183, 3833–3841 (2001).
Schaus, N., O'Day, K., Peters, W. & Wright, A. Isolation and characterization of amber mutations in gene dnaA of Escherichia coli K-12. J. Bacteriol. 145, 904–913 (1981).
Goranov, A. I., Katz, L., Breier, A. M., Burge, C. B. & Grossman, A. D. A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA. Proc. Natl Acad. Sci. USA 102, 12932–12937 (2005).
Gon, S. et al. A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. EMBO J. 25, 1137–1147 (2006).
Chiaramello, A. E. & Zyskind, J. W. Expression of Escherichia coli dnaA and mioC genes as a function of growth rate. J. Bacteriol. 171, 4272–4280 (1989).
Hanawalt, P. C., Maaloe, O., Cummings, D. J. & Schaechter, M. The normal DNA replication cycle. II. J. Mol. Biol. 3, 156–165 (1961).
Cashel, M., Gentry, D. R., Hernandez, V. H. & Vinella, D. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) (ASM, Washington DC, 1996).
Barker, M. M., Gaal, T., Josaitis, C. A. & Gourse, R. L. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305, 673–688 (2001).
Chiaramello, A. E. & Zyskind, J. W. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J. Bacteriol. 172, 2013–2019 (1990).
Schreiber, G., Ron, E. Z. & Glaser, G. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr. Microbiol. 30, 27–32 (1995).
Levine, A., Vannier, F., Dehbi, M., Henckes, G. & Seror, S. J. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J. Mol. Biol. 219, 605–613 (1991).
Ferullo, D. J. & Lovett, S. T. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet. 4, e1000300 (2008).
Lesley, J. A. & Shapiro, L. SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J. Bacteriol. 190, 6867–6880 (2008).
Gorbatyuk, B. & Marczynski, G. T. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol. Microbiol. 55, 1233–1245 (2005).
Atlung, T., Clausen, E. S. & Hansen, F. G. Autoregulation of the dnaA gene of Escherichia coli K12. Mol. Gen. Genet. 200, 442–450 (1985).
Braun, R. E., O'Day, K. & Wright, A. Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40, 159–169 (1985).
Lu, M., Campbell, J. L., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).
Hansen, F. G., Christensen, B. B. & Atlung, T. The initiator titration model: computer simulation of chromosome and minichromosome control. Res. Microbiol. 142, 161–167 (1991).
Nozaki, S., Yamada, Y. & Ogawa, T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 14, 329–341 (2009).
Keyamura, K. et al. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP DnaA-specific initiation complexes. Genes Dev. 21, 2083–2099 (2007).
Murray, H. & Errington, J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74–84 (2008).
Riber, L. et al. Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev. 20, 2121–2134 (2006).
Kato, J. & Katayama, T. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. Embo J. 20, 4253–4262 (2001).
Noirot-Gros, M. F. et al. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 103, 2368–2373 (2006).
Cho, E., Ogasawara, N. & Ishikawa, S. The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtils. Genes Genet. Syst. 83, 111–125 (2008).
Soufo, C. D. et al. Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev. Cell 15, 935–941 (2008).
Hayashi, M., Ogura, Y., Harry, E. J., Ogasawara, N. & Moriya, S. Bacillus subtilis YabA is involved in determining the timing and synchrony of replication initiation. FEMS Microbiol. Lett. 247, 73–79 (2005).
Noirot-Gros, M. F. et al. An expanded view of bacterial DNA replication. Proc. Natl Acad. Sci. USA 99, 8342–8347 (2002).
Donachie, W. D. Relationship between cell size and time of initiation of DNA replication. Nature 219, 1077–1079 (1968).
Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007).
Wold, S., Skarstad, K., Steen, H. B., Stokke, T. & Boye, E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J. 13, 2097–2102 (1994).
Bipatnath, M., Dennis, P. P. & Bremer, H. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J. Bacteriol. 180, 265–273 (1998).
Churchward, G., Estiva, E. & Bremer, H. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J. Bacteriol. 145, 1232–1238 (1981).
Bates, D. & Kleckner, N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121, 899–911 (2005).
Donachie, W. D. Co-ordinate regulation of the Escherichia coli cell cycle or The cloud of unknowing. Mol. Microbiol. 40, 779–785 (2001).
Michelsen, O., Teixeira de Mattos, M. J., Jensen, P. R. & Hansen, F. G. Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology 149, 1001–1010 (2003).
Churchward, G. & Bremer, H. Determination of deoxyribonucleic acid replication time in exponentially growing Escherichia coli B/r. J. Bacteriol. 130, 1206–1213 (1977).
Herrick, J. & Sclavi, B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol. Microbiol. 63, 22–34 (2007).
Wang, J. D., Sanders, G. M. & Grossman, A. D. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128, 865–875 (2007).
Janniere, L. et al. Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447 (2007).
Waldminghaus, T. & Skarstad, K. The Escherichia coli SeqA protein. Plasmid 61, 141–150 (2009).
Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J. Bacteriol. 180, 547–555 (1998).
Sargent, M. G. Control of cell length in Bacillus subtilis. J. Bacteriol. 123, 7–19 (1975).
Weart, R. B. & Levin, P. A. Growth rate-dependent regulation of medial FtsZ ring formation. J. Bacteriol. 185, 2826–2834 (2003).
Rueda, S., Vicente, M. & Mingorance, J. Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 185, 3344–3351 (2003).
Rowland, S. L., Katis, V. L., Partridge, S. R. & Wake, R. G. DivIB, FtsZ and cell division in Bacillus subtilis. Mol. Microbiol. 23, 295–302 (1997).
Harry, E. J., Rodwell, J. & Wake, R. G. Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol. Microbiol. 33, 33–40 (1999).
Bramkamp, M., Weston, L., Daniel, R. A. & Errington, J. Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. Mol. Microbiol. 62, 580–591 (2006).
Regamey, A., Harry, E. J. & Wake, R. G. Mid-cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: co-ordinating chromosome replication with cell division. Mol. Microbiol. 38, 423–434 (2000).
Jaffe, A., D'Ari, R. & Norris, V. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J. Bacteriol. 165, 66–71 (1986).
Sun, Q., Yu, X. C. & Margolin, W. Assembly of the FtsZ ring at the central division site in the absence of the chromosome. Mol. Microbiol. 29, 491–503 (1998).
Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).
Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004).
Donachie, W. D. & Begg, K. J. Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J. Bacteriol. 171, 4633–4639 (1989).
Cooper, S. Cell division and DNA replication following a shift to a richer medium. J. Mol. Biol. 43, 1–11 (1969).
Lu, M. & Kleckner, N. Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J. Bacteriol. 176, 5847–5851 (1994).
Acknowledgements
We thank D. Bates, A. Goranov and B. Hill for comments. Work in the Wang laboratory is supported by the Welch Foundation (Q-1698) and Public Health Service grants (GM084003 and DP2OD004433) from the US National Institutes of Health. Work in the Levin laboratory is supported by Public Health Services grant (GM64671) from the US National Institutes of Health and a National Science Foundation CAREER award (MCB-0448186).
Author information
Authors and Affiliations
Related links
Related links
DATABASES
Entrez Genome Project
Salmonella enterica subsp. enterica serovar Typhimurium
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Wang, J., Levin, P. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7, 822–827 (2009). https://doi.org/10.1038/nrmicro2202
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2202
This article is cited by
-
The in vivo measurement of replication fork velocity and pausing by lag-time analysis
Nature Communications (2023)
-
Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift
Nature Communications (2023)
-
Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication
BMC Biology (2022)
-
Escherichia coli cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production
Microbial Cell Factories (2022)
-
Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host
Nature Communications (2022)