Key Points
-
The first recognizable event in bacterial cell division is the assembly of FtsZ into a ring-like structure at mid-cell. This Z ring serves as a scaffold for the assembly of the division machinery and contracts throughout division, guiding the synthesis of the nascent septum.
-
FtsZ is the ancestral homologue of tubulin and assembles cooperatively, in a GTP-dependent manner, into longitudinal protofilaments similar to those of αβ-tubulin. Although the polymerization of FtsZ in vitro has been studied extensively, little is known about the architecture of the polymers that make up the Z ring in vivo.
-
Importantly, the concentration of FtsZ in vivo is greatly in excess of the critical concentration for assembly. Despite this, the intracellular concentration of FtsZ does not vary greatly during the cell cycle. The initiation of cell division is instead regulated both spatially and temporally at the level of Z ring assembly, by an array of accessory proteins that can modulate the polymerization of FtsZ.
-
FtsZ is a cytoplasmic protein, but it must be tethered to the inner face of the cytoplasmic membrane to form the Z ring. This is achieved primarily by the action of FtsA, which is widely conserved and contains an amphipathic membrane-targeting sequence. Where present, ZipA, an integral membrane protein, can also allow Z ring assembly and, along with ZapA, also contributes to the stability of the Z ring.
-
Other, early-assembling regulators, such as ZapB and SepF, potentially play a part in organizing the ultrastructure of the Z ring and, although it is not normally essential, SepF seems to contribute to this process and might also be able to act as a membrane tether.
-
The Z ring is not a static structure. The polymers that constitute the Z ring are in a state of flux, with subunits rapidly exchanging between the polymer and the cytoplasmic pool. This turnover is stimulated by GTP hydrolysis and is regulated by the antagonistic behaviour of many non-essential proteins, including ZapA, extra Z rings A (EzrA) and ClpX.
-
Several regulatory proteins also render the Z ring responsive to variations in the cell cycle by taking advantage of the accessibility of subunits that is afforded by the dynamic nature of the Z ring. UgtP delays cell division by destabilizing the Z ring, and the induction of SulA during the SOS response prevents new Z ring assembly and disassembles existing Z rings. In addition, during sporulation, mother cell inhibitor of FtsZ (MciZ) prevents inappropriate cell division once the process has been initiated.
Abstract
Bacterial cell division is orchestrated by a tubulin homologue, FtsZ, which polymerizes to form a ring-like structure that is both a scaffold for the assembly of the bacterial cytokinetic machinery and, at least in part, a source of the energy for constriction. FtsZ assembly is tightly regulated, and a diverse repertoire of accessory proteins contributes to the formation of a functional division machine that is responsive to cell cycle status and environmental stress. In this Review, we describe the interaction of these proteins with FtsZ and discuss recent advances in our understanding of Z ring assembly.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Genomic insights into the physiology of Quinella, an iconic uncultured rumen bacterium
Nature Communications Open Access 20 October 2022
-
Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli
Nature Microbiology Open Access 12 September 2022
-
Non-essentiality of canonical cell division genes in the planctomycete Planctopirus limnophila
Scientific Reports Open Access 09 January 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).
Goehring, N. W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526 (2005).
Harry, E., Monahan, L. & Thompson, L. Bacterial cell division: the mechanism and its precison. Int. Rev. Cytol. 253, 27–94 (2006).
Bi, E. F. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164 (1991).
Addinall, S. G. & Lutkenhaus, J. FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol. Microbiol. 22, 231–237 (1996).
Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nature Rev. Mol. Cell Biol. 6, 862–871 (2005).
Haydon, D. J. et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321, 1673–1675 (2008). This paper describes the validation of FtsZ as a clinically relevant target for new antibiotics.
Kelly, A. J., Sackett, M. J., Din, N., Quardokus, E. & Brun, Y. V. Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12, 880–893 (1998).
Quardokus, E., Din, N. & Brun, Y. V. Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc. Natl Acad. Sci. USA 93, 6314–6319 (1996).
Rueda, S., Vicente, M. & Mingorance, J. Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 185, 3344–3351 (2003).
Weart, R. B. & Levin, P. A. Growth rate-dependent regulation of medial FtsZ ring formation. J. Bacteriol. 185, 2826–2834 (2003).
Romberg, L. & Levin, P. A. Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu. Rev. Microbiol. 57, 125–154 (2003).
Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).
Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).
Erickson, H. P. FtsZ, a prokaryotic homolog of tubulin? Cell 80, 367–370 (1995).
Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 2754–2758 (1994).
Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl Acad. Sci. USA 93, 519–523 (1996).
Löwe, J. & Amos, L. A. Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J. 18, 2364–2371 (1999).
Oliva, M. A., Cordell, S. C. & Löwe, J. Structural insights into FtsZ protofilament formation. Nature Struct. Mol. Biol. 11, 1243–1250 (2004). The work described in references 18 and 19 provides evidence that the protofilaments of FtsZ and tubulin make similar longitudinal contacts.
de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).
RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).
Mukherjee, A., Dai, K. & Lutkenhaus, J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl Acad. Sci. USA 90, 1053–1057 (1993).
Scheffers, D. J., de Wit, J. G., den Blaauwen, T. & Driessen, A. J. Substitution of a conserved aspartate allows cation-induced polymerization of FtsZ. FEBS Lett. 494, 34–37 (2001).
Scheffers, D. J., de Wit, J. G., den Blaauwen, T. & Driessen, A. J. GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41, 521–529 (2002).
Romberg, L., Simon, M. & Erickson, H. P. Polymerization of Ftsz, a bacterial homolog of tubulin: is assembly cooperative? J. Biol. Chem. 276, 11743–11753 (2001).
Caplan, M. R. & Erickson, H. P. Apparent cooperative assembly of the bacterial cell division protein FtsZ demonstrated by isothermal titration calorimetry. J. Biol. Chem. 278, 13784–13788 (2003).
Chen, Y., Bjornson, K., Redick, S. D. & Erickson, H. P. A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys. J. 88, 505–514 (2005).
Wang, X. & Lutkenhaus, J. The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. Mol. Microbiol. 9, 435–442 (1993).
Romberg, L. & Mitchison, T. J. Rate-limiting guanosine 5′-triphosphate hydrolysis during nucleotide turnover by FtsZ, a prokaryotic tubulin homologue involved in bacterial cell division. Biochemistry 43, 282–288 (2004).
Mukherjee, A. & Lutkenhaus, J. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17, 462–469 (1998).
Bramhill, D. & Thompson, C. M. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl Acad. Sci. USA 91, 5813–5817 (1994).
Popp, D., Iwasa, M., Narita, A., Erickson, H. P. & Maéda, Y. FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91, 340–350 (2009).
Li, Z., Trimble, M. J., Brun, Y. V. & Jensen, G. J. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 26, 4694–4708 (2007). This study generated the first high-resolution images of FtsZ polymers in the Z ring in vivo , which revealed that the structure might not be a ring after all. The force-generating potential of the observed polymers is also discussed in this article.
Chen, Y. & Erickson, H. P. Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J. Biol. Chem. 280, 22549–22554 (2005).
Dajkovic, A., Mukherjee, A. & Lutkenhaus, J. Investigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization. J. Bacteriol. 190, 2513–2526 (2008).
Huecas, S. et al. Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys. J. 94, 1796–1806 (2008).
Miraldi, E. R., Thomas, P. J. & Romberg, L. Allosteric models for cooperative polymerization of linear polymers. Biophys. J. 95, 2470–2486 (2008).
Lu, C., Stricker, J. & Erickson, H. P. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima — quantitation, GTP hydrolysis, and assembly. Cell. Motil. Cytoskeleton 40, 71–86 (1998).
Mingorance, J., Rueda, S., Gómez-Puertas, P., Valencia, A. & Vicente, M. Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol. Microbiol. 41, 83–91 (2001).
Stricker, J., Maddox, P., Salmon, E. D. & Erickson, H. P. Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl Acad. Sci. USA 99, 3171–3175 (2002).
Anderson, D. E., Gueiros-Filho, F. J. & Erickson, H. P. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J. Bacteriol. 186, 5775–5781 (2004). References 34, 40 and 41 show that FtsZ polymers are highly dynamic and discuss the physiological implications of this behaviour.
Levin, P. A., Schwartz, R. L. & Grossman, A. D. Polymer stability plays an important role in the positional regulation of FtsZ. J. Bacteriol. 183, 5449–5452 (2001).
Lu, C., Reedy, M. & Erickson, H. P. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182, 164–170 (2000).
Oliva, M. A., Trambaiolo, D. & Löwe, J. Structural insights into the conformational variability of FtsZ. J. Mol. Biol. 373, 1229–1242 (2007).
Mukherjee, A., Saez, C. & Lutkenhaus, J. Assembly of an FtsZ mutant deficient in GTPase activity has implications for FtsZ assembly and the role of the Z ring in cell division. J. Bacteriol. 183, 7190–7197 (2001).
Erickson, H. P. Modeling the physics of FtsZ assembly and force generation. Proc. Natl Acad. Sci. USA 106, 9238–9243 (2009). This manuscript provides a comprehensive summary of the recent attempts to model the assembly of FtsZ and a discussion of the potential mechanisms by which a single-stranded polymer can behave cooperatively.
Osawa, M., Anderson, D. E. & Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science 320, 792–794 (2008). This groundbreaking study shows that a membrane-tethered FtsZ is itself sufficient to assemble Z rings and that these rings can constrict within tubular liposomes. This article also proposes a powerful new in vitro model for cell division.
Lan, G., Daniels, B. R., Dobrowsky, T. M., Wirtz, D. & Sun, S. X. Condensation of FtsZ filaments can drive bacterial cell division. Proc. Natl Acad. Sci. USA 106, 121–126 (2009).
Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 (1998).
Ma, X. & Margolin, W. Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 7531–7544 (1999).
Erickson, H. P. The FtsZ protofilament and attachment of ZipA — structural constraints on the FtsZ power stroke. Curr. Opin. Cell Biol. 13, 55–60 (2001).
Vaughan, S., Wickstead, B., Gull, K. & Addinall, S. G. Molecular evolution of FtsZ protein sequences encoded within the genomes of Archaea, Bacteria, and Eukaryota. J. Mol. Evol. 58, 19–29 (2004).
Erickson, H. P. FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol. 7, 362–367 (1997).
Pichoff, S. & Lutkenhaus, J. Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J. 21, 685–693 (2002).
Hale, C. A. & de Boer, P. A. J. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175–185 (1997).
Hale, C. A. & de Boer, P. A. J. Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J. Bacteriol. 181, 167–176 (1999).
Mosyak, L. et al. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J. 19, 3179–3191 (2000).
Moy, F. J., Glasfeld, E., Mosyak, L. & Powers, R. Solution structure of ZipA, a crucial component of Escherichia coli cell division. Biochemistry 39, 9146–9156 (2000).
Hale, C. A., Rhee, A. C. & de Boer, P. A. J. ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J. Bacteriol. 182, 5153–5166 (2000).
Levin, P. A., Kurtser, I. G. & Grossman, A. D. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 96, 9642–9647 (1999).
Liu, Z., Mukherjee, A. & Lutkenhaus, J. Recruitment of ZipA to the division site by interaction with FtsZ. Mol. Microbiol. 31, 1853–1861 (1999).
Hale, C. A. & de Boer, P. A. J. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J. Bacteriol. 184, 2552–2556 (2002).
Haney, S. A. et al. Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J. Biol. Chem. 276, 11980–11987 (2001).
RayChaudhuri, D. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J. 18, 2372–2383 (1999).
Ohashi, T., Hale, C. A., de Boer, P. A. & Erickson, H. P. Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J. Bacteriol. 184, 4313–4315 (2002).
Geissler, B., Elraheb, D. & Margolin, W. A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli. Proc. Natl Acad. Sci. USA 100, 4197–4202 (2003).
Pichoff, S. & Lutkenhaus, J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55, 1722–1734 (2005). This article describes the discovery of an amphipathic helix in FtsA, which explains the ability of FtsA to act as a membrane tether for the Z ring.
van den Ent, F. & Löwe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307 (2000). The work in this paper shows that FtsA is structurally related to actin.
Sánchez, M., Valencia, A., Ferrándiz, M. J., Sander, C. & Vicente, M. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J. 13, 4919–4925 (1994).
Feucht, A., Lucet, I., Yudkin, M. D. & Errington, J. Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40, 115–125 (2001).
Lara, B. et al. Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol. Microbiol. 55, 699–711 (2005).
Pichoff, S. & Lutkenhaus, J. Identification of a region of FtsA required for interaction with FtsZ. Mol. Microbiol. 64, 1129–1138 (2007).
Rico, A. I., García-Ovalle, M., Mingorance, J. & Vicente, M. Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol. Microbiol. 53, 1359–1371 (2004).
Shiomi, D. & Margolin, W. Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol. Microbiol. 66, 1396–1415 (2007).
Yan, K., Pearce, K. H. & Payne, D. J. A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 270, 387–392 (2000).
Yim, L. et al. Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J. Bacteriol. 182, 6366–6373 (2000).
Carettoni, D. et al. Phage-display and correlated mutations identify an essential region of subdomain 1C involved in homodimerization of Escherichia coli FtsA. Proteins 50, 192–206 (2003).
Dai, K. & Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145–6151 (1992).
Shiomi, D. & Margolin, W. Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Mol. Microbiol. 67, 558–569 (2008).
Corbin, B. D., Geissler, B., Sadasivam, M. & Margolin, W. Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J. Bacteriol. 186, 7736–7744 (2004).
Bernard, C. S., Sadasivam, M., Shiomi, D. & Margolin, W. An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol. Microbiol. 64, 1289–1305 (2007).
Geissler, B., Shiomi, D. & Margolin, W. The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology 153, 814–825 (2007).
Beall, B. & Lutkenhaus, J. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174, 2398–2403 (1992).
Jensen, S. O., Thompson, L. S. & Harry, E. J. Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-ring assembly. J. Bacteriol. 187, 6536–6544 (2005).
Ishikawa, S., Kawai, Y., Hiramatsu, K., Kuwano, M. & Ogasawara, N. A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol. Microbiol. 60, 1364–1380 (2006).
Gueiros-Filho, F. J. & Losick, R. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 16, 2544–2556 (2002).
Johnson, J. E., Lackner, L. L., Hale, C. A. & de Boer, P. A. ZipA is required for targeting of DMinC/DicB, but not DMinC/MinD, complexes to septal ring assemblies in Escherichia coli. J. Bacteriol. 186, 2418–2429 (2004).
Hamoen, L. W., Meile, J. C., de Jong, W., Noirot, P. & Errington, J. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol. 59, 989–999 (2006). References 85 and 88 describe SepF, the only non-essential accessory protein identified to date that, when absent, greatly affects septum morphology.
Low, H. H., Moncrieffe, M. C. & Löwe, J. The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol. 341, 839–852 (2004).
Small, E. et al. FtsZ polymer-bundling by the Escherichia coli ZapA orthologue, YgfE, involves a conformational change in bound GTP. J. Mol. Biol. 369, 210–221 (2007).
Marrington, R., Small, E., Rodger, A., Dafforn, T. R. & Addinall, S. G. FtsZ fiber bundling is triggered by a conformational change in bound GTP. J. Biol. Chem. 279, 48821–48829 (2004).
Dajkovic, A., Lan, G., Sun, S. X., Wirtz, D. & Lutkenhaus, J. MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr. Biol. 18, 235–244 (2008).
Scheffers, D. J. The effect of MinC on FtsZ polymerization is pH dependent and can be counteracted by ZapA. FEBS Lett. 582, 2601–2608 (2008).
Ebersbach, G., Galli, E., Møller-Jensen, J., Löwe, J. & Gerdes, K. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol. Microbiol. 68, 720–735 (2008).
Haeusser, D. P., Schwartz, R. L., Smith, A. M., Oates, M. E. & Levin, P. A. EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol. Microbiol. 52, 801–814 (2004).
Chung, K. M., Hsu, H. H., Govindan, S. & Chang, B. Y. Transcription regulation of ezrA and its effect on cell division of Bacillus subtilis. J. Bacteriol. 186, 5926–5932 (2004).
Haeusser, D. P., Garza, A. C., Buscher, A. Z. & Levin, P. A. The division inhibitor EzrA contains a seven-residue patch required for maintaining the dynamic nature of the medial FtsZ ring. J. Bacteriol. 189, 9001–9010 (2007).
Kawai, Y. & Ogasawara, N. Bacillus subtilis EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division. Microbiology 152, 1129–1141 (2006).
Chung, K. M., Hsu, H. H., Yeh, H. Y. & Chang, B. Y. Mechanism of regulation of prokaryotic tubulin-like GTPase FtsZ by membrane protein EzrA. J. Biol. Chem. 282, 14891–14897 (2007).
Singh, J. K., Makde, R. D., Kumar, V. & Panda, D. A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ. Biochemistry 46, 11013–11022 (2007).
Claessen, D. et al. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 68, 1029–1046 (2008).
Tavares, J. R., de Souza, R. F., Meira, G. L. & Gueiros-Filho, F. J. Cytological characterization of YpsB, a novel component of the Bacillus subtilis divisome. J. Bacteriol. 190, 7096–7107 (2008).
Fadda, D. et al. Characterization of divIVA and other genes located in the chromosomal region downstream of the dcw cluster in Streptococcus pneumoniae. J. Bacteriol. 185, 6209–6214 (2003).
Miyagishima, S. Y., Wolk, C. P. & Osteryoung, K. W. Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol. Microbiol. 56, 126–143 (2005).
Weart, R. B., Nakano, S., Lane, B. E., Zuber, P. & Levin, P. A. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol. Microbiol. 57, 238–249 (2005).
Haeusser, D. P., Lee, A. H., Weart, R. B. & Levin, P. A. ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. J. Bacteriol. 191, 1986–1991 (2009).
Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007). This study identifies a glucose-sensitive regulator of Z ring assembly that can delay cell division during rapid growth.
Huisman, O. & D'Ari, R. An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290, 797–799 (1981).
Huisman, O., D'Ari, R. & Gottesman, S. Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc. Natl Acad. Sci. USA 81, 4490–4494 (1984).
Justice, S. S., García-Lara, J. & Rothfield, L. I. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol. Microbiol. 37, 410–423 (2000).
Bi, E. & Lutkenhaus, J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175, 1118–1125 (1993).
Mukherjee, A., Cao, C. & Lutkenhaus, J. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc. Natl Acad. Sci. USA 95, 2885–2890 (1998).
Cordell, S. C., Robinson, E. J. & Löwe, J. Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc. Natl Acad. Sci. USA 100, 7889–7894 (2003).
Higashitani, A., Higashitani, N. & Horiuchi, K. A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem. Biophys. Res. Commun. 209, 198–204 (1995).
Trusca, D., Scott, S., Thompson, C. & Bramhill, D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J. Bacteriol. 180, 3946–3953 (1998).
Huang, J., Cao, C. & Lutkenhaus, J. Interaction between FtsZ and inhibitors of cell division. J. Bacteriol. 178, 5080–5085 (1996).
Dai, K., Mukherjee, A., Xu, Y. & Lutkenhaus, J. Mutations in ftsZ that confer resistance to SulA affect the interaction of FtsZ with GTP. J. Bacteriol. 176, 130–136 (1994).
Kawai, Y., Moriya, S. & Ogasawara, N. Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol. Microbiol. 47, 1113–1122 (2003).
Ogino, H., Teramoto, H., Inui, M. & Yukawa, H. DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum. Mol. Microbiol. 67, 597–608 (2008). References 118 and 119 describe the identification of two unrelated proteins that halt cell division following DNA damage.
Handler, A. A., Lim, J. E. & Losick, R. Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis. Mol. Microbiol. 68, 588–599 (2008).
Stokes, N. R. et al. Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J. Biol. Chem. 280, 39709–39715 (2005).
Amos, L. A. The tektin family of microtubule-stabilizing proteins. Genome Biol. 9, 229 (2008).
Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008).
Glöckner, F. O. et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl Acad. Sci. USA 100, 8298–8303 (2003).
Jaffe, J. D. et al. The complete genome and proteome of Mycoplasma mobile. Genome Res. 14, 1447–1461 (2004).
Erickson, H. P. Dynamin and FtsZ. Missing links in mitochondrial and bacterial division. J. Cell Biol. 148, 1103–1105 (2000).
Brown, W. J. & Rockey, D. D. Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect. Immun. 68, 708–715 (2000).
Lindås, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008).
Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710–1713 (2008). References 128 and 129 report the discovery of a new division machinery in the Crenarchaeota, explaining how they divide without FtsZ.
Leaver, M., Domínguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009). This paper provides evidence that B. subtilis retains the ability to divide independently of FtsZ when forced to grow without its protective cell wall.
McCormick, J. R., Su, E. P., Driks, A. & Losick, R. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14, 243–254 (1994).
Rothfield, L., Taghbalout, A. & Shih, Y. L. Spatial control of bacterial division-site placement. Nature Rev. Microbiol. 3, 959–968 (2005).
Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007). References 132 and 133 are two recent, comprehensive reviews of division-site selection in bacteria.
Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004).
Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).
Hu, Z., Mukherjee, A., Pichoff, S. & Lutkenhaus, J. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl Acad. Sci. USA 96, 14819–14824 (1999).
Hu, Z. & Lutkenhaus, J. Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J. Bacteriol. 182, 3965–3971 (2000).
Shen, B. & Lutkenhaus, J. The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinCC/MinD. Mol. Microbiol. 72, 410–424 (2009).
Raskin, D. M. & de Boer, P. A. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 91, 685–694 (1997).
Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82–90 (1999).
Raskin, D. M. & de Boer, P. A. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181, 6419–6424 (1999).
Edwards, D. H. & Errington, J. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24, 905–915 (1997).
Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12, 3419–3430 (1998).
Marston, A. L. & Errington, J. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33, 84–96 (1999).
Patrick, J. E. & Kearns, D. B. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol. Microbiol. 70, 1166–1179 (2008).
Bramkamp, M. et al. A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol. Microbiol. 70, 1556–1569 (2008).
Gregory, J. A., Becker, E. C. & Pogliano, K. Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev. 22, 3475–3488 (2008).
Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002).
Thanedar, S. & Margolin, W. FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr. Biol. 14, 1167–1173 (2004).
Michie, K. A., Monahan, L. G., Beech, P. L. & Harry, E. J. Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ. J. Bacteriol. 188, 1680–1690 (2006).
Peters, P. C., Migocki, M. D., Thoni, C. & Harry, E. J. A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis. Mol. Microbiol. 64, 487–499 (2007).
Gamba, P., Veening, J. W., Saunders, N. J., Hamoen, L. W. & Daniel, R. A. Two-step assembly dynamics of the Bacillus subtilis divisome. J. Bacteriol. 191, 4186–4194 (2009).
Vicente, M., Rico, A. I., Martínez-Arteaga, R. & Mingorance, J. Septum enlightenment: assembly of bacterial division proteins. J. Bacteriol. 188, 19–27 (2006).
Goehring, N. W., Gonzalez, M. D. & Beckwith, J. Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol. Microbiol. 61, 33–45 (2006).
Aarsman, M. E. et al. Maturation of the Escherichia coli divisome occurs in two steps. Mol. Microbiol. 55, 1631–1645 (2005).
Acknowledgements
We apologise to colleagues whose work has not been cited in full owing to space constraints. We thank members of the Centre for Bacterial Cell Biology for stimulating discussions and L. Hamoen for helpful comments on the manuscript. Work on cell division in the Errington laboratory is supported by a grant from the Biotechnology and Biological Sciences Research Council (BBSRC). D.W.A is supported by a BBSRC CASE studentship with Prolysis.
Author information
Authors and Affiliations
Corresponding author
Related links
Related links
DATABASES
Entrez Genome Project
Protein Data Bank
FURTHER INFORMATION
Glossary
- Cooperative assembly
-
Assembly that is characterized by the increased affinity of individual subunits for the growing polymer rather than for each other. Polymerization displays a sigmoidal relationship with concentration and has a defined critical concentration, below which no significant assembly occurs.
- Cryo-electron microscopy tomography
-
A technique that allows the visualization of biological molecules in a near-native state. Unfixed samples are flash frozen, held at cryogenic temperature and visualized by transmission electron microscopy. Tomography uses a series of tilted images from which a three-dimensional image of the sample can be deduced.
- Fluorescence recovery after photobleaching
-
A live-cell imaging technique used to monitor the intracellular dynamics of fluorescently tagged molecules. A target region is irreversibly photobleached by a laser and then monitored for recovery of fluorescence. Dynamics are expressed in terms of the half-time for recovery (the time taken to reach half of the original fluorescence intensity).
- Bitopic protein
-
A protein that contains a single transmembrane segment between the cytoplasmic and extracytoplasmic domains.
- ftsZ84
-
A mutation that results in the substitution of glycine to serine at position 105 in Escherichia coli FtsZ. This substitution reduces both the GTP binding and the GTPase activity of FtsZ in vitro and renders the protein temperature sensitive in vivo.
- Synthetic lethal
-
Lethality due to a combination of two non-lethal mutations.
- 90°-angle light scattering
-
A real-time assay that measures the amount of light that is scattered by FtsZ polymers. The increase in signal is proportional to the extent of Z ring assembly, and the method can also be used to follow disassembly.
- Lipoteichoic acid
-
A class of teichoic acids that is anchored in the cell membrane. Teichoic acids are anionic polymers that are ubiquitous in the cell walls of Gram-positive bacteria.
Rights and permissions
About this article
Cite this article
Adams, D., Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7, 642–653 (2009). https://doi.org/10.1038/nrmicro2198
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2198
This article is cited by
-
Evaluation of 2,6-difluoro-3-(oxazol-2-ylmethoxy)benzamide chemotypes as Gram-negative FtsZ inhibitors
The Journal of Antibiotics (2022)
-
Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli
Nature Microbiology (2022)
-
Genomic insights into the physiology of Quinella, an iconic uncultured rumen bacterium
Nature Communications (2022)
-
Single-molecule imaging reveals that Z-ring condensation is essential for cell division in Bacillus subtilis
Nature Microbiology (2021)
-
Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction
Nature Microbiology (2021)