Key Points
-
The ideal organism for biofuel production will possess high substrate use and processing capacities, fast and deregulated pathways of sugar transport, good tolerances to inhibitors and product, and high metabolic fluxes and will produce a single fermentation product. It is unclear whether such an organism will be engineered using a native isolated strain or a recombinant model organism as the starting point.
-
Ethanol and other alternative, next-generation biofuels all rely on the application of metabolic engineering principles to create an industrially relevant organism.
-
The discovery of additional diverse pathways through bioprospecting methods and new strain isolation will certainly improve prospects for further optimizing microorganisms and play an important part in developing biofuel production systems.
-
Advances in synthetic biology provide a valuable technology, enabling better diversification of the biofuel-type molecules that are produced in standard model organisms.
-
The divergent and often competing metabolic pathways that are required for the conversion of the relevant carbohydrates increase the challenge of finding or engineering one such superior organism. Therefore, it is important to consider the potential of using multiple engineered organisms to accomplish the goal of biofuels production.
-
The future of bioprocessing (whether biofuels or other chemicals) will be faced with the choice between exploiting innate cellular capacity and importing biosynthetic potential.
Abstract
The ideal microorganism for biofuel production will possess high substrate utilization and processing capacities, fast and deregulated pathways for sugar transport, good tolerance to inhibitors and product, and high metabolic fluxes and will produce a single fermentation product. It is unclear whether such an organism will be engineered using a native, isolated strain or a recombinant, model organism as the starting point. The choice between engineering natural function and importing biosynthetic capacity is affected by current progress in metabolic engineering and synthetic biology. This Review highlights some of the factors influencing the above decision, in light of current advances.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Intelligent microbial cell factory with genetic pH shooting (GPS) for cell self-responsive base/acid regulation
Microbial Cell Factories Open Access 02 November 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Hill, J., Nelson, E., Tilman, D., Polasky, S. & Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl Acad. Sci. USA 103, 11206–11210 (2006).
Lynd, L. et al. Energy returns on ethanol production. Science 312, 1746–1748 (2006).
Pimentel, D. & Lal, R. Biofuels and the environment. Science 317, 897–898 (2007).
Pimentel, D., Patzek, T. & Cecil, G. Ethanol production: energy, economic, and environmental losses. Rev. Environ. Contam. Toxicol. 189, 25–41 (2007).
Durre, P. Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007).
Withers, S. T., Gottlieb, S. S., Lieu, B., Newman, J. D. & Keasling, J. D. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73, 6277–6283 (2007).
Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008). This work uses native amino acid pathways to produce a wide array of non-naturally occurring higher alcohols, especially highly energetic branched chain alcohols.
Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305–311 (2008).
Kalscheuer, R., Stolting, T. & Steinbuchel, A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152, 2529–2536 (2006).
Keasling, J. D. & Chou, H. Metabolic engineering delivers next-generation biofuels. Nature Biotech. 26, 298–299 (2008).
Maeda, T., Sanchez-Torres, V. & Wood, T. Metabolic engineering to enhance bacterial hydrogen production. Microb. Biotechnol. 1, 30–39 (2008).
McKendry, P. Energy production from biomass (Part 3): gasification technologies. Bioresour. Technol. 83, 55–63 (2002).
Henstra, A. M., Sipma, J., Rinzema, A. & Stams, A. J. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18, 200–206 (2007).
Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005). This report presents methods for non-microbial conversion of biomass sugars into alkanes and other potential fuels and chemicals.
Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y. & Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447, 982–985 (2007).
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).
Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C. How did Saccharomyces evolve to become a good brewer? Trends Genet. 22, 183–186 (2006).
Geib, S. M. et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA 105, 12932–12937 (2008).
Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007).
Temudo, M., Muyzer, G., Kleerebezem, R. & van Loosdrecht, M. Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 80, 1121–1130 (2008).
Kumar, R., Singh, S. & Singh, O. V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008).
Martinez, D. et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotech. 26, 553–560 (2008). This article describes the genome sequence and characterization of a key organism typically used to provide enzymes for biomass degradation.
Hammel, K. E. & Cullen, D. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11, 349–355 (2008).
Makela, M. R., Hilden, K. S., Hakala, T. K., Hatakka, A. & Lundell, T. K. Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Curr. Genet. 50, 323–333 (2006).
Ryu, S. H., Lee, A. Y. & Kim, M. Molecular characteristics of two laccase from the Basidiomycete fungus Polyporus brumalis. J. Microbiol. 46, 62–69 (2008).
Singh, D. & Chen, S. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl. Microbiol. Biotechnol. 81, 399–417 (2008).
Warnick, T. A., Methe, B. A. & Leschine, S. B. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52, 1155–1160 (2002).
Rogers, P. L., Jeon, Y. J., Lee, K. J. & Lawford, H. G. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263–288 (2007).
Jeffries, T. W. et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnol. 25, 319–326 (2007).
Zhang, Y. H. & Lynd, L. R. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl Acad. Sci. USA 102, 7321–7325 (2005).
Tyurin, M. V., Sullivan, C. R. & Lynd, L. R. Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes. Appl. Environ. Microbiol. 71, 8069–8076 (2005).
Keating, J. D., Panganiban, C. & Mansfield, S. D. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93, 1196–1206 (2006).
Underwood, S. A., Buszko, M. L., Shanmugam, K. T. & Ingram, L. O. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl. Environ. Microbiol. 70, 2734–2740 (2004).
Den Haan, R., Rose, S. H., Lynd, L. R. & van Zyl, W. H. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87–94 (2007). This study imported key cellulytic enzymes to create a strain of yeast that is able to perform consolidated bioprocessing by converting amorphous cellulose into ethanol.
Jones, D. T. & Woods, D. R. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484–524 (1986).
Cornillot, E., Nair, R. V., Papoutsakis, E. T. & Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179, 5442–5447 (1997).
Tummala, S. B., Welker, N. E. & Papoutsakis, E. T. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185, 1923–1934 (2003).
Shao, L. et al. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res. 17, 963–965 (2007).
Jojima, T., Inui, M. & Yukawa, H. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1219–1224 (2008).
Inui, M. et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305–1316 (2008).
Alper, H. & Stephanopoulos, G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9, 258–267 (2007). This investigation took a novel, global approach to enhancing tolerance phenotypes that are crucial for improving biofuel-producing organisms.
Jensen, K., Alper, H., Fischer, C. & Stephanopoulos, G. Identifying functionally important mutations from phenotypically diverse sequence data. Appl. Environ. Microbiol. 72, 3696–3701 (2006).
Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).
Guido, N. J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).
Tyo, K. E., Alper, H. S. & Stephanopoulos, G. N. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25, 132–137 (2007).
Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA 102, 12678–12683 (2005).
Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).
Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).
Kodumal, S. J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA 101, 15573–15578 (2004).
Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M. & Yukawa, H. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl. Microbiol. Biotechnol. 74, 754–760 (2007).
Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. & Keasling, J. D. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556–563 (2008).
Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).
Hutchison, C. A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).
Alper, H. & Stephanopoulos, G. Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl. Microbiol. Biotechnol. 78, 801–810 (2008).
Jeffries, T. W. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17, 320–326 (2006).
Jin, Y. S., Alper, H., Yang, Y. T. & Stephanopoulos, G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71, 8249–8256 (2005).
Jeffries, T. W. & Jin, Y. S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63, 495–509 (2004).
Jin, Y. S., Jones, S., Shi, N. Q. & Jeffries, T. W. Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl. Environ. Microbiol. 68, 1232–1239 (2002).
Kuyper, M. et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5, 399–409 (2005).
Karimaki, J. et al. Engineering the substrate specificity of xylose isomerase. Protein Eng. Des. Sel. 17, 861–869 (2004).
Qin, Y., Wei, X., Song, X. & Qu, Y. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J. Biotechnol. 135, 190–195 (2008).
Pitera, D. J., Paddon, C. J., Newman, J. D. & Keasling, J. D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9, 193–207 (2007).
Alper, H., Miyaoku, K. & Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotech. 23, 612–616 (2005).
van Zyl, W. H., Lynd, L. R., den Haan, R. & McBride, J. E. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108, 205–235 (2007).
Lynd, L. R., Cushman, J. H., Nichols, R. J. & Wyman, C. E. Fuel ethanol from cellulosic biomass. Science 251, 1318–1323 (1991).
Lynd, L. R., van Zyl, W. H., McBride, J. E. & Laser, M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583 (2005).
Zhou, X. et al. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395, 29–39 (2007).
Szambelan, K., Nowak, J. & Czarnecki, Z. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol. Lett. 26, 845–848 (2004).
Patle, S. & Lal, B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett. 29, 1839–1843 (2007).
Eiteman, M. A., Lee, S. A. & Altman, E. A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2, 3 (2008). This report provides evidence that a consortia of organisms may perform better than a single organism in co-fermentations of glucose and xylose.
Leuchtenberger, W., Huthmacher, K. & Drauz, K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl. Microbiol. Biotechnol. 69, 1–8 (2005).
Hamilton, S. R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006).
Stephanopoulos, G. & Sinskey, A. J. Metabolic engineering — methodologies and future prospects. Trends Biotechnol. 11, 392–396 (1993).
Ostergaard, S., Olsson, L., Johnston, M. & Nielsen, J. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotech. 18, 1283–1286 (2000).
Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotech. 18, 533–537 (2000).
Becker, J. & Boles, E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69, 4144–4150 (2003).
Martinez, D. et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA 106, 1954–1959 (2009). This is the first systems biology analysis of a brown rot fungus that will be useful for gene harvesting and studying the function of native lignocellulosic conversion.
Seo, J. S. et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nature Biotech. 23, 63–68 (2005).
Shi, N. Q., Davis, B., Sherman, F., Cruz, J. & Jeffries, T. W. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15, 1021–1030 (1999).
Lynd, L. R., Grethlein, H. E. & Wolkin, R. H. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl. Environ. Microbiol. 55, 3131–3139 (1989).
Balusu, R., Paduru, R. M., Seenayya, G. & Reddy, G. Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation: screening of nutrients using Plackett-Burman design. Appl. Biochem. Biotechnol. 117, 133–141 (2004).
Hahn-Hagerdal, B., Karhumaa, K., Jeppsson, M. & Gorwa-Grauslund, M. F. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108, 147–177 (2007).
Kuyper, M., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4, 655–664 (2004).
Ho, N. W., Chen, Z., Brainard, A. P. & Sedlak, M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 65, 163–192 (1999).
Yomano, L. P., York, S. W. & Ingram, L. O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20, 132–138 (1998).
Ingram, L. O. et al. Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58, 204–214 (1998).
Inui, M., Kawaguchi, H., Murakami, S., Vertes, A. A. & Yukawa, H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J. Mol. Microbiol. Biotechnol. 8, 243–254 (2004).
Durre, P. Fermentative butanol production: bulk chemical and biofuel. Ann. NY Acad. Sci. 1125, 353–362 (2008).
Thormann, K., Feustel, L., Lorenz, K., Nakotte, S. & Durre, P. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J. Bacteriol. 184, 1966–1973 (2002).
Harris, L. M., Blank, L., Desai, R. P., Welker, N. E. & Papoutsakis, E. T. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27, 322–328 (2001).
Steen, E. et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36 (2008).
Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).
Papanikolaou, S. & Aggelis, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 82, 43–49 (2002).
Kalscheuer, R. et al. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl. Environ. Microbiol. 72, 1373–1379 (2006).
Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M. & Yukawa, H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl. Environ. Microbiol. 71, 6762–6768 (2005).
Ghirardi, M. L. Hydrogen production by photosynthetic green algae. Indian J. Biochem. Biophys. 43, 201–210 (2006).
Hankamer, B. et al. Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol. Plant 131, 10–21 (2007).
Park, M. O. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J. Bacteriol. 187, 1426–1429 (2005).
Park, M. O., Heguri, K., Hirata, K. & Miyamoto, K. Production of alternatives to fuel oil from organic waste by the alkane-producing bacterium, Vibrio furnissii M1. J. Appl. Microbiol. 98, 324–331 (2005).
Wackett, L. P., Frias, J. A., Seffernick, J. L., Sukovich, D. J. & Cameron, S. M. Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl. Environ. Microbiol. 73, 7192–7198 (2007).
Acknowledgements
We acknowledge support from the Department of Energy (grant number: DE-FC36-07G017058), the National Science Foundation (grant number: CBET-0730238) and the Camille and Henry Dreyfus New Faculty Award.
Author information
Authors and Affiliations
Corresponding author
Related links
Related links
DATABASES
Entrez Genome Project
FURTHER INFORMATION
Glossary
- Biomass
-
Raw plant material or agricultural waste typically composed of polymers of sugars and lignin.
- Gasification
-
The thermal conversion of biomass into carbon monoxide and hydrogen through high temperature processing.
- Syn gas
-
The carbon monoxide and hydrogen gas formed during gasification. Also known as synthesis gas.
- Aqueous-phase reforming
-
A low-temperature, liquid- phase catalytic process that is used to convert biomass sugars into hydrocarbons through the formation of hydrogen gas.
- Biomass utilization
-
The process of converting biomass into fuels and chemicals, including any physical, chemical, enzymatic or cell-based application.
- Synthetic biology
-
The use of DNA synthesis and recombinant DNA technologies to design and construct novel functions and genetic circuits de novo.
- Consolidated bioprocessing
-
An approach whereby the four major steps of biomass utilization (enzyme production, biomass hydrolysis, hexose fermentation and pentose fermentation) take place in a single step.
- Lignocellulose
-
Plant biomass that is composed of the sugar polymers (cellulose and hemicellulose) and lignin (which is often composed of hydrophobic and aromatic molecules).
- Bioprospecting
-
Searching for and borrowing useful genes from other organisms to confer a specifcally confer a specifically desired phenotype technology.
- Isoprenoid
-
A chemically diverse and flexible polymer of the 5-carbon isoprene group that is found naturally in all living organisms.
- Xylose fermentation capacity
-
The ability of a cell to convert xylose (a highly abundant, but often difficult to ferment, five-carbon sugar found in hemicellulose) into a biofuel.
- Lycopene
-
A carotenoid (specific type of isoprenoid) that is a 40-carbon molecule formed by the condensation of isoprene units.
Rights and permissions
About this article
Cite this article
Alper, H., Stephanopoulos, G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nat Rev Microbiol 7, 715–723 (2009). https://doi.org/10.1038/nrmicro2186
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2186
This article is cited by
-
A First Marine Vibrio Biocatalyst to Produce Ethanol from Alginate, which is a Rich Polysaccharide in Brown Macroalgal Biomass
Current Microbiology (2023)
-
The growth and lipid accumulation of Scenedesmus quadricauda under nitrogen starvation stress during xylose mixotrophic/heterotrophic cultivation
Environmental Science and Pollution Research (2022)
-
Intelligent microbial cell factory with genetic pH shooting (GPS) for cell self-responsive base/acid regulation
Microbial Cell Factories (2020)
-
Factors affecting yeast ethanol tolerance and fermentation efficiency
World Journal of Microbiology and Biotechnology (2020)
-
Enhanced Lipid Production in Yarrowia lipolytica Po1g by Over-expressing lro1 Gene under Two Different Promoters
Applied Biochemistry and Biotechnology (2020)