Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exoelectrogenic bacteria that power microbial fuel cells

Abstract

There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Microbial fuel cell architecture.
Figure 2: Potentials and power densities in microbial fuel cells.
Figure 3: Scanning electron micrograph of Rhodopseudomonas palustris on a carbon paper anode.

References

  1. Cheng, S., Liu, H. & Logan, B. E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40, 364–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, F. et al. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7, 1405–1410 (2005).

    Article  CAS  Google Scholar 

  3. Logan, B. E. Microbial Fuel Cells (John Wiley & Sons, Hoboken, New Jersey, 2008).

    Google Scholar 

  4. Logan, B. E. & Regan, J. M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14, 512–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Prasad, D. et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens. Bioelectron. 22, 2604–2610 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang, I. S. et al. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16, 163–177 (2007).

    Google Scholar 

  8. Rittmann, B. E., Krajmalnik-Brown, R. & Halden, R. U. Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nature Rev. Microbiol. 6, 604–612 (2008).

    Article  CAS  Google Scholar 

  9. Lovley, D. R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497–508 (2006).

    Article  CAS  Google Scholar 

  10. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zuo, Y., Xing, D., Regan, J. M. & Logan, B. E. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74, 3130–3137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pham, T. H. et al. Metabolites produced by Pseudomonas sp. enable a Gram positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 77, 1119–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Myers, C. R. & Myers, J. M. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174, 3429–3438 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rabaey, K., Boon, N., Hofte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. El-Naggar, M. Y., Gorby, Y. A., Xia, W. & Nealson, K. H. The molecular density of states in bacterial nanowires. Biophys. J. 95, L10–L12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clauwaert, P. et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol. 41, 7564–7569 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Clauwaert, P. et al. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41, 3354–3360 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V. M. & Buisman, C. J. N. Hydrogen production with a microbial biocathode. Environ. Sci. Technol. 42, 629–634 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Schaefer, A. L. et al. A new class of homoserine lactone quorum-sensing signals. Nature 454, 595–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Dietrich, L. E., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez, M. E., Kappier, A. & Newman, D. K. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 79, 921–928 (2004).

    Article  Google Scholar 

  23. Logan, B. E. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Chaudhuri, S. K. & Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol. 21, 1229–1232 (2003).

    Article  CAS  Google Scholar 

  25. Min, B., Cheng, S. & Logan, B. E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39, 1675–1686 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, H., Cheng, S. & Logan, B. E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39, 5488–5493 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Logan, B. E., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Ishii, S., Watanabe, K., Yabuki, S., Logan, B. E. & Sekiguchi, Y. Characterization of electrode reducing rates of Geobacter sulfurreducens and an enriched electricity-generating mixed consortium in a microbial fuel cell. Appl. Environ. Microbiol. 74, 7348–7355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nevin, K. P. et al. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 10, 2505–2514 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, B. H., Kim, H.-J., Hyun, M.-S. & Park, D.-H. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9, 127–131 (1999).

    Google Scholar 

  31. von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Watson, V. Shewanella oneidensis MR-1 Compared to a Mixed Culture for Electricity Production in Four Different Batch Microbial Fuel Cell Configurations. Thesis, The Pennsylvania State University (2008).

    Google Scholar 

  33. Ringeisen, B. R., Ray, R. & Little, B. A miniature microbial fuel cell operating with an aerobic anode chamber. J. Power Sour. 165, 591–597 (2007).

    Article  CAS  Google Scholar 

  34. Ringeisen, B. R. et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40, 2629–2634 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Leonardo, M. R., Dailly, Y. & Clark, D. P. Role of NAD in regulating the adhE gene of Escherichia coli. J. Bacteriol. 178, 6013–6018 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cordas, C. M., Guerra, L. T., Xavier, C. & Moura, J. J. G. Electroactive biofilms of sulphate reducing bacteria. Electrochim. Acta 54, 29–34 (2008).

    Article  CAS  Google Scholar 

  37. Xing, D., Zuo, Y., Cheng, S., Regan, J. M. & Logan, B. E. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42, 4146–4151 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Holmes, D. E., Nicoll, J. S., Bond, D. R. & Lovley, D. R. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 70, 6023–6030 (2004) erratum 75, 885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aelterman, P., Freguia, S., Keller, J., Verstraete, W. & Rabaey, K. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78, 409–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freguia, S., Rabaey, K., Yuan, Z. & Keller, J. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation Environ. Sci. Technol. 41, 2915–2921 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Fan, Y., Hu, H. & Liu, H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41, 8154–8158 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Fan, Y., Sharbrough, E. & Liu, H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 42, 8101–8107 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Marcus, A. K., Torres, C. I. & Rittmann, B. E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 98, 1171–1182 (2007).

    Article  CAS  Google Scholar 

  45. Shizas, I. & Bagley, D. M. Experimental determination of energy content of unknown organics in municipal wastewater streams. J. Energy Engin. 130, 45–53 (2004).

    Article  Google Scholar 

  46. Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nature Biotechnol. 20, 821–825 (2002).

    Article  CAS  Google Scholar 

  47. Rezaei, F., Richard, T. L., Brennan, R. & Logan, B. E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol. 41, 4053–4058 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, S. & Logan, B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9, 492–496 (2007).

    Article  Google Scholar 

  49. Hassler, B. L., Kohli, N., Zeikus, J. G., Lee, I. & Worden, R. M. Renewable dehydrogenase-based interfaces for bioelectronic applications. Langmuir 23, 7127–7133 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Izallalen, M. et al. Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng. 10, 267–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Pham, C. A. et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223, 129–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Holmes, D. E., Bond, D. R. & Lovley, D. R. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234–1237 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bretschger, O. et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, T. et al. A novel mediatorless microbial fuel cell based on biocatalysis of Escherichia coli. Chem. Commun. 2006, 2257–2259 (2006).

    Article  Google Scholar 

  56. Zhao, F. et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 42, 4971–4976 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Borole, A. P., O'Neill, H., Tsouris, C. & Cesar, S. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnol. Lett. 30, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, L. et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem. Commun. 10, 1641–1643 (2008).

    Article  CAS  Google Scholar 

  59. Wrighton, K. C. et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2, 1146–1156 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J.M. Regan for valuable comments and discussion, and the Air Force Office of Scientific Research and the KAUST (King Abdullah University of Science and Technology) Global Research Partnership for their support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Clostridium acetobutylicum

Desulphovibrio desulphuricans subspecies desulphuricans strain ATTC 27774

Escherichia coli

Geobacter sulfurreducens

Methanothermobacter thermautotrophicus

Ochrobactrum anthropi

Pelotomaculum thermopropionicum

Pseudomonas aeruginosa

Rhodopseudomonas palustris

Shewanella oneidensis MR-1

Shewanella putrefaciens

Synechocystis sp. PCC 6803

FURTHER INFORMATION

Bruce E. Logan's homepage

Glossary

Air cathode

A cathode that is exposed to air on one side and water on the other side.

Anode potential

The potential of the anode relative to a reference electrode (usually a standard hydrogen electrode).

Catholyte

A chemical that accepts electrons at the cathode.

Coulombic efficiency

Amount of Coulombs captured in electrical current generation relative to the maximum possible assuming complete oxidation of the substrate. A Coulomb is the SI unit of electric charge, and is the amount of electric charge transported in 1 second at 1 ampere.

Dissimilatory metal-reducing bacterium

A bacterium that is capable of using metals as a terminal electron acceptor for respiration.

Exocellular

Occurring outside the cell membrane (equivalent to extracellular) in a cell surface or non-cell-associated process.

Exoelectrogenic

Describes the ability of certain microorganisms to generate and transfer electrons exocellularly.

Nanowire

An electrically conductive appendage produced by a bacterium that is proposed to conduct electrons from the cell to surfaces such as metal oxides or electrodes.

Potentiostat

A device that can be used to set a specific potential for an electrode.

Quorum signal

A small molecule that is used as a signal for specialized responses within a bacterial community.

Redox potential

A relative measure of the potential (in volts) for a chemical to gain or lose electrons.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Logan, B. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7, 375–381 (2009). https://doi.org/10.1038/nrmicro2113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing