Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations

Abstract

An increasing amount of information on the action of antimicrobial peptides (AMPs) at the molecular level has not yet been translated into a comprehensive understanding of effects in bacteria. Although some biophysical attributes of AMPs have been correlated with macroscopic features, the physiological relevance of other properties has not yet been addressed. Pertinent and surprising conclusions have therefore been left unstated. Strong membrane-binding and micromolar therapeutic concentrations of AMPs indicate that membrane-bound concentrations may be reached that are higher than intuitively expected, triggering disruptive effects on bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed mechanisms of antimicrobial peptide-mediated membrane disruption.

Similar content being viewed by others

References

  1. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Robinson, W. E. Jr, McDougall, B., Tran, D. & Selsted, M. E. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63, 94–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Albiol Matanic, V. C. & Castilla, V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents 23, 382–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Henriques, S. T., Melo, M. N. & Castanho, M. A. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 399, 1–7 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowdish, D. M., Davidson, D. J. & Hancock, R. E. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr. Protein Pept. Sci. 6, 35–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Hoskin, D. W. & Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778, 357–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Hancock, R. E. Peptide antibiotics. Lancet 349, 418–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  10. Baumann, G. & Mueller, P. A molecular model of membrane excitability. J. Supramol. Struct. 2, 538–557 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P. & Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Ludtke, S. J. et al. Membrane pores induced by magainin. Biochemistry 35, 13723–13728 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Leontiadou, H., Mark, A. E. & Marrink, S. J. Antimicrobial peptides in action. J. Am. Chem. Soc. 128, 12156–12161 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hsu, J. C. & Yip, C. M. Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys. J. 92, L100–L102 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sengupta, D., Leontiadou, H., Mark, A. E. & Marrink, S. J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta 10, 2308–2317 (2008).

    Article  Google Scholar 

  16. Perron, G. G., Zasloff, M. & Bell, G. Experimental evolution of resistance to an antimicrobial peptide. Proc. Biol. Sci. 273, 251–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, H. W. Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim. Biophys. Acta 1758, 1292–1302 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Melo, M. N. & Castanho, M. A. Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochim. Biophys. Acta 1768, 1277–1290 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Pistolesi, S., Pogni, R. & Feix, J. B. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15. Biophys. J. 93, 1651–1660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giacometti, A. et al. In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically. Antimicrob. Agents Chemother. 44, 1694–1696 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Staubitz, P. et al. Structure–function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J. Pept. Sci. 7, 552–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Friedrich, C. L., Moyles, D., Beveridge, T. J. & Hancock, R. E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44, 2086–2092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pott, T., Paternostre, M. & Dufourc, E. J. A comparative study of the action of melittin on sphingomyelin and phosphatidylcholine bilayers. Eur. Biophys. J. 27, 237–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Weiss, T. M. et al. Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers. Biochemistry 41, 10070–10076 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Wenk, M. R. & Seelig, J. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37, 3909–3916 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bastos, M. et al. Energetics and partition of two cecropin–melittin hybrid peptides to model membranes of different composition. Biophys. J. 94, 2128–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Papo, N. & Shai, Y. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24, 1693–1703 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, L., Rozek, A. & Hancock, R. E. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276, 35714–35722 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Giacometti, A., Cirioni, O., Greganti, G., Quarta, M. & Scalise, G. In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob. Agents Chemother. 42, 3320–3324 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gazit, E., Boman, A., Boman, H. G. & Shai, Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34, 11479–11488 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Chiu, S. W., Jakobsson, E., Subramaniam, S. & Scott, H. L. Combined monte carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys. J. 77, 2462–2469 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haynie, S. L., Crum, G. A. & Doele, B. A. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrob. Agents Chemother. 39, 301–307 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andrushchenko, V. V., Aarabi, M. H., Nguyen, L. T., Prenner, E. J. & Vogel, H. J. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta 1778, 1004–1014 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Matsuzaki, K., Fukui, M., Fujii, N. & Miyajima, K. Permeabilization and morphological changes in phosphatidylglycerol bilayers induced by an antimicrobial peptide, tachyplesin I. Colloid Polym. Sci. 271, 901–908 (1993).

    Article  CAS  Google Scholar 

  35. Nernst, W. Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen Lösungsmittel und Dampfraum. Z. Phys. Chem. 8, 110–139 (1891).

    Article  Google Scholar 

  36. Santos, N. C., Prieto, M. & Castanho, M. A. Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim. Biophys. Acta 1612, 123–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Tossi, A., Sandri, L. & Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 55, 4–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ferre, R. et al. Synergistic effects of the membrane actions of cecropin–melittin antimicrobial hybrid peptide BP100. Biophys. J. (in the press).

  39. Burck, J. et al. Conformation and membrane orientation of amphiphilic helical peptides by OCD. Biophys. J. 95, 3872–3881 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pan, Y. L. et al. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys. J. 92, 2854–2864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. White, S. H. & King, G. I. Molecular packing and area compressibility of lipid bilayers. Proc. Natl Acad. Sci. USA 82, 6532–6536 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beschiaschvili, G. & Seelig, J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29, 52–58 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Blondelle, S. E. & Houghten, R. A. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30, 4671–4678 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Dathe, M., Nikolenko, H., Meyer, J., Beyermann, M. & Bienert, M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 501, 146–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Maloy, W. L. & Kari, U. P. Structure–activity studies on magainins and other host defense peptides. Biopolymers 37, 105–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Sader, H. S., Fedler, K. A., Rennie, R. P., Stevens, S. & Jones, R. N. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob. Agents Chemother. 48, 3112–3118 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Subbalakshmi, C., Krishnakumari, V., Sitaram, N. & Nagaraj, R. Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J. Biosci. 23, 9–13 (1998).

    Article  CAS  Google Scholar 

  48. Mor, A. & Nicolas, P. The NH2-terminal α-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem. 269, 1934–1939 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Fundação para a Ciência e a Tecnologia (Portugal) is acknowledged for a grant to M.N. Melo (SFRH/BD/24,778/2005). M.M. Melo is thanked for critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. R. B. Castanho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Miguel A. R. B. Castanho's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, M., Ferre, R. & Castanho, M. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7, 245–250 (2009). https://doi.org/10.1038/nrmicro2095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing