Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Symbiotic use of pathogenic strategies: rhizobial protein secretion systems

Abstract

Rhizobia — a diverse group of soil bacteria — induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nodule development processes.
Figure 2: Regulation of rhizobial protein secretion systems.
Figure 3: Functions of rhizobial effectors.

Similar content being viewed by others

References

  1. Jones, K. M., Kobayashi, H., Davies, B. W. & Walker, G. C. How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nature Rev. Microbiol. 5, 619–633 (2007).

    Article  CAS  Google Scholar 

  2. Perret, X., Staehelin, C. & Broughton, W. J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Downie, J. A. Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules. Curr. Biol. 15, R196–R198 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Sprent, J. I. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174, 11–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Sprent, J. I. 60Ma of legume nodulation. What's new? What's changing? J. Exp. Bot. 59, 1081–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Sprent, J. I. & James, E. K. Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol. 144, 575–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Den Herder, G., Schroeyers, K., Holsters, M. & Goormachtig, S. Signaling and gene expression for water-tolerant legume nodulation. Crit. Rev. Plant Sci. 25, 367–380 (2006).

    Article  CAS  Google Scholar 

  8. Meijer, E. G. M. & Broughton, W. J. in Molecular Biology of Plant Tumours (eds Kahl, G. & Schell, J. S.) 107–129 (Academic, New York, 1982).

    Book  Google Scholar 

  9. Giraud, E. & Fleischman, D. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth. Res. 82, 115–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Giraud, E. et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316, 1307–1312 (2007).

    Article  PubMed  Google Scholar 

  11. Broughton, W. J., Jabbouri, S. & Perret, X. Keys to symbiotic harmony. J. Bacteriol. 182, 5641–5652 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper, J. E. Multiple responses of rhizobia to flavonoids during legume root infection. Adv. Bot. Res. 41, 62–81 (2004).

    Google Scholar 

  13. Reddy, P. M., Rendon-Anaya, M., de los Dolores del Rio, M. & Khandual, S. Flavonoids as signaling molecules and regulators of nodule development. Dynamic soil, Dynamic plant 1, 83–94 (2007).

    Google Scholar 

  14. D'Haeze, W. et al. Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Mol. Plant Microbe Interact. 11, 999–1008 (1998).

    Article  CAS  Google Scholar 

  15. Relic, B. et al. Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13, 171–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Broughton, W. J. Control of specificity in legume–Rhizobium associations. J. Appl. Bacteriol. 45, 165–194 (1978).

    Article  Google Scholar 

  17. Mergaert, P. et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc. Natl Acad. Sci. USA 103, 5230–5235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Djordjevic, M. A., Gabriel, D. W. & Rolfe, B. G. Rhizobium — the refined parasite of legumes. Annu. Rev. Phytopathol. 25, 145–165 (1987).

    Article  Google Scholar 

  19. D'Antuono, A. L. et al. Defects in rhizobial cyclic glucan and lipopolysaccharide synthesis alter legume gene expression during nodule development. Mol. Plant Microbe Interact. 21, 50–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Deguchi, Y. et al. Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA Res. 14, 117–133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, K. M. et al. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc. Natl Acad. Sci. USA 105, 704–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lohar, D. P. et al. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 140, 221–234 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan, H. B. & Pueppke, S. G. Flavonoid inducers of nodulation genes stimulate Rhizobium fredii USDA257 to export proteins into the environment. Mol. Plant Microbe Interact. 6, 107–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Krishnan, H. B., Kuo, C.-L. & Pueppke, S. G. Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont Rhizobium fredii is regulated by both nodD1 and nodD2, and is dependent on the cultivar-specific locus, nolXWBTUV. Microbiology 41, 2245–2251 (1995).

    Article  Google Scholar 

  26. Meinhardt, L. W., Krishnan, H. B., Balatti, P. A. & Pueppke, S. G. Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol. Microbiol. 9, 17–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Pueppke, S. G. & Broughton, W. J. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant Microbe Interact. 12, 293–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Marie, C. et al. Characterisation of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol. Plant Microbe Interact. 16, 743–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Viprey, V., Del Greco, A., Golinowski, W., Broughton, W. J. & Perret, X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28, 1381–1389 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Broughton, W. J. et al. Beans (Phaseolus spp.) — model food legumes. Plant Soil 252, 55–128 (2003).

    Article  CAS  Google Scholar 

  31. Mabberley, D. J. The Plant Book (Cambridge Univ. Press, 1987).

    Google Scholar 

  32. Zehner, S., Schober, G., Wenzel, M., Lang, K. & Göttfert, M. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol. Plant Microbe Interact. 21, 1087–1093 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Perret, X., Freiberg, C., Rosenthal, A., Broughton, W. J. & Fellay, R. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol. Microbiol. 32, 415–425 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi, H., Naciri-Graven, Y., Broughton, W. J. & Perret, X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol. Microbiol. 51, 335–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Marie, C. et al. TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol. Plant Microbe Interact. 17, 958–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Broughton, W. J. Roses by other names: taxonomy of the Rhizobiaceae. J. Bacteriol. 185, 2975–2979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCullen, C. A. & Binns, A. N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu. Rev. Cell Dev. Biol. 22, 101–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Wassem, R. et al. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol. Microbiol. 68, 736–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hubber, A. M., Sullivan, J. T. & Ronson, C. W. Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol. Plant Microbe Interact. 20, 255–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J. J. & Ronson, C. W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 54, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan, J. T. et al. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J. Bacteriol. 184, 3086–3095 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krause, A., Doerfel, A. & Göttfert, M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 15, 1228–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Süb, C. et al. Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum. J. Biotechnol. 126, 69–77 (2006).

    Article  CAS  Google Scholar 

  44. Skorpil, P. et al. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol. Microbiol. 57, 1304–1317 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Bartsev, A. V. et al. NopL, an effector protein of Rhizobium sp. NGR234 thwarts activation of plant defence reactions. Plant Physiol. 134, 871–879 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McDonald, C., Vacratsis, P. O., Bliska, J. B. & Dixon, J. E. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 278, 18514–18523 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Hotson, A., Chosed, R., Shu, H., Orth, K. & Mudgett, M. B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Lahaye, T. & Bonas, U. Molecular secrets of bacterial type III effector proteins. Trends Plant Sci. 6, 479–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Kambara, K. et al. Rhizobia utilize homologues of pathogenic effector proteins during symbiosis. Mol. Microbiol. 71, 92–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Shao, F., Merrit, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Puri, N. et al. Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol. Plant Microbe Interact. 10, 247–256 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Tampakaki, A. P., Bastaki, M., Mansfield, J. W. & Panopoulos, N. J. Molecular determinants required for the avirulence function of AvrPphB in bean and other plants. Mol. Plant Microbe Interact. 15, 292–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Nimchuk, Z. et al. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101, 353–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Shao, F. et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230–1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Gomez-Gomez, L. & Boller, T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci. 7, 251–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Schlumberger, M. C. & Hardt, W. D. Salmonella type III secretion effectors: pulling the host cell's strings. Curr. Opin. Microbiol. 9, 46–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Jones, K. M., Lloret, J., Daniele, J. R. & Walker, G. C. The type IV secretion system of Sinorhizobium meliloti strain 1021 is required for conjugation but not for intracellular symbiosis. J. Bacteriol. 189, 2133–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Young, J. P. et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7, R34 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saier, M. H. Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12, 113–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bogdanove, A. J. et al. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20, 681–683 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. He, S. Y. & Jin, Q. The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6, 15–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  Google Scholar 

  68. D'Haeze, W. & Holsters, M. Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol. 12, 555–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Broughton, W. J. et al. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234–legume symbioses. J. Bacteriol. 188, 3654–3663 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gonzalez, J. E., Semino, C. E., Wang, L. X., Castellano-Torres, L. E. & Walker, G. C. Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc. Natl Acad. Sci. USA 95, 13477–13482 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, L. X., Wang, Y., Pellock, B. & Walker, G. C. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J. Bacteriol. 181, 6788–6796 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pellock, B. J., Cheng, H. P. & Walker, G. C. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J. Bacteriol. 182, 4310–4318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Staehelin, C. et al. Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. J. Bacteriol. 188, 6168–6178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. York, G. M. & Walker, G. C. The Rhizobium meliloti exoK gene and prsD/prsE/exsH genes are components of independent degradative pathways which contribute to production of low-molecular-weight succinoglycan. Mol. Microbiol. 25, 117–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. York, G. M. & Walker, G. C. The Rhizobium meliloti ExoK and ExsH glycanases specifically depolymerize nascent succinoglycan chains. Proc. Natl Acad. Sci. USA 95, 4912–4917 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, H. P. & Walker, G. C. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS–ChvI two-component regulatory system. J. Bacteriol. 180, 20–26 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baumgarth, B., Bartels, F. W., Anselmetti, D., Becker, A. & Ros, R. Detailed studies of the binding mechanism of the Sinorhizobium meliloti transcriptional activator ExpG to DNA. Microbiology 151, 259–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Kannenberg, E. L., Reuhs, B. L., Forsberg, L. S. & Carlson, R. W. in The Rhizobiaceae (eds Spaink, H. P., Kondorosi, A. & Hooykaas, P. J. J.) 119–154 (Kluwer Academic, Dordrecht, 1998).

    Book  Google Scholar 

  79. Petrovics, G. et al. The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Mol. Microbiol. 8, 1083–1094 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Reuhs, B. L., Williams, M. N., Kim, J. S., Carlson, R. W. & Cote, F. Suppression of the Fix phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J. Bacteriol. 177, 4289–4296 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kiss, E. et al. The rkp-3 gene region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure. Mol. Plant Microbe Interact. 14, 1395–1403 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Parada, M. et al. Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol. Plant Microbe Interact. 19, 43–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Rodriguez-Carvajal, M. A. et al. Structural analysis of the capsular polysaccharide from Sinorhizobium fredii HWG35. Biomacromolecules 6, 1448–1456 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Le Quéré, A. J.-L. et al. Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234. J. Biol. Chem. 281, 28981–28992 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. D'Haeze, W., Leoff, C., Freshour, G., Noel, K. D. & Carlson, R. W. Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J. Biol. Chem. 282, 17101–17113 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Ferguson, G. P., Datta, A., Carlson, R. W. & Walker, G. C. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol. Microbiol. 56, 68–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Sharypova, L. A., Niehaus, K., Scheidle, H., Holst, O. & Becker, A. Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J. Biol. Chem. 278, 12946–12954 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Ferguson, G. P. et al. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl Acad. Sci. USA 101, 5012–5017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Campbell, G. R. et al. Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. J. Bacteriol. 185, 3853–3862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, M., D'Haeze, W., De Rycke, R., Wolucka, B. & Holsters, M. Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Mol. Plant Microbe Interact. 14, 857–866 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Noel, K. D., Forsberg, L. S. & Carlson, R. W. Varying the abundance of O antigen in Rhizobium etli and its effect on symbiosis with Phaseolus vulgaris. J. Bacteriol. 182, 5317–5324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reuhs, B. L. et al. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules. J. Bacteriol. 187, 6479–6487 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deakin, W. J., Marie, C., Saad, M. M., Krishnan, H. B. & Broughton, W. J. NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234. Mol. Plant Microbe Interact. 18, 499–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Saad, M. M. et al. NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J. Bacteriol. 187, 1173–1181 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saad, M. M., Staehelin, C., Broughton, W. J. & Deakin, W. J. Protein–protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234. J. Bacteriol. 190, 750–754 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Göttfert, M. et al. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol. 183, 1405–1412 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kaneko, T. et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9, 189–197 (2002).

    Article  PubMed  Google Scholar 

  99. Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Ausmees, N. et al. Characterisation of NopP, a type III secreted effector of Rhizobium sp. NGR234. J. Bacteriol. 186, 4774–4780 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Michiels, J., Pelemans, H., Vlassak, K., Verreth, C. & Vanderleyden, J. Identification and characterization of a Rhizobium leguminosarum bv. phaseoli gene that is important for nodulation competitiveness and shows structural homology to a Rhizobium fredii host-inducible gene. Mol. Plant Microbe Interact. 8, 468–472 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Lopez-Baena, F. J. et al. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154, 1825–1836 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Marie, C., Broughton, W. J. & Deakin, W. J. Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol. 4, 336–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Rodrigues, J. A. et al. NopM and NopD are rhizobial nodulation outer proteins: identification using LC–MALDI and LC–ESI with a monolithic capillary column. J. Proteome Res. 6, 1029–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Krishnan, H. B. NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J. Bacteriol. 184, 831–839 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krishnan, H. B. et al. Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol. Plant Microbe Interact. 16, 617–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Lorio, J. C., Kim, W. S. & Krishnan, H. B. NopB, a soybean cultivar-specificity protein from Sinorhizobium fredii USDA257, is a type III secreted protein. Mol. Plant Microbe Interact. 17, 1259–1268 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Göttfert, W. D'Haeze, H. Kobayashi and G. Walker for their critical reviews of the manuscript. J. Michiels allowed us to cite his unpublished data. We thank S. Ardissone, N. Bakkou, J. Gay-Fraret, K. Kambara, P. Lariguet, A. Le Quéré and O. Schumpp for discussions and sharing their unpublished data. We are indebted to Y.-Y. Aung and D. Gerber for their unstinting help with our work. We apologize to the numerous researchers whose work could not be cited owing to space limitations. Financial support from the Fonds National Suisse de la Recherche Scientifique (projects 3100AO-104097 and 3100A0-116858) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Agrobacterium tumefaciens

Bradyrhizobium japonicum USDA110

Glycine max

Lotus japonicus

Medicago sativa

Medicago truncatula

Mesorhizobium loti

Phaseolus vulgaris

Pseudomonas syringae

Rhizobium leguminosarum

Rhizobium sp. NGR234

Shigella flexneri

Sinorhizobium meliloti

Vigna unguiculata

FURTHER INFORMATION

LBMPS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deakin, W., Broughton, W. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7, 312–320 (2009). https://doi.org/10.1038/nrmicro2091

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing