Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A dynamic view of the spread and intracellular distribution of Salmonella enterica

Abstract

The events that determine the dynamics of proliferation, spread and distribution of microbial pathogens within their hosts are surprisingly heterogeneous and poorly understood. We contend that understanding these phenomena at a sophisticated level with the help of mathematical models is a prerequisite for the development of truly novel, targeted preventative measures and drug regimes. We describe here recent studies of Salmonella enterica infections in mice which suggest that bacteria resist the antimicrobial environment inside host cells and spread to new sites, where infection foci develop, and thus avoid local escalation of the adaptive immune response. We further describe implications for our understanding of the pathogenic mechanism inside the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spread of Salmonella enterica in the mouse.
Figure 2: Population dynamics of Salmonella enterica in the organs of infected mice.
Figure 3: The key immunological factors that control the intracellular and extracellular phases of infection.

Similar content being viewed by others

References

  1. Crump, J. A., Luby, S. P. & Mintz, E. D. The global burden of typhoid fever. Bull. World Health Organ. 82, 346–353 (2004).

    PubMed  PubMed Central  Google Scholar 

  2. Kankwatira, A. M., Mwafulirwa, G. A. & Gordon, M. A. Non-typhoidal Salmonella bacteraemia — an under-recognized feature of AIDS in African adults. Trop. Doct. 34, 198–200 (2004).

    Article  PubMed  Google Scholar 

  3. Gordon, M. A. et al. Non-typhoidal Salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. Aids 16, 1633–1641 (2002).

    Article  PubMed  Google Scholar 

  4. Graham, S. M. et al. Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr. Infect. Dis. J. 19, 1189–1196 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Gilks, C. F. et al. Life-threatening bacteraemia in HIV-1 seropositive adults admitted to hospital in Nairobi, Kenya. Lancet 336, 545–549 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Mulholland, E. K. & Adegbola, R. A. Bacterial infections — a major cause of death among children in Africa. N. Engl. J. Med. 352, 75–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Enwere, G. et al. Epidemiologic and clinical characteristics of community-acquired invasive bacterial infections in children aged 2–29 months in The Gambia. Pediatr. Infect. Dis. J. 25, 700–705 (2006).

    Article  PubMed  Google Scholar 

  8. Mastroeni, P. et al. Resistance and susceptibility to Salmonella infections: lessons from mice and patients with immunodeficiencies. Rev. Med. Microbiol. 14, 53–62 (2003).

    Article  Google Scholar 

  9. Hohmann, E. L. Nontyphoidal salmonellosis. Clin. Infect. Dis. 32, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Bachou, H., Tylleskar, T., Kaddu-Mulindwa, D. H. & Tumwine, J. K. Bacteraemia among severely malnourished children infected and uninfected with the human immunodeficiency virus-1 in Kampala, Uganda. BMC Infect. Dis. 6, 160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graham, S. M., Walsh, A. L., Molyneux, E. M., Phiri, A. J. & Molyneux, M. E. Clinical presentation of non-typhoidal Salmonella bacteraemia in Malawian children. Trans. R. Soc. Trop. Med. Hyg. 94, 310–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Graham, S. M., Hart, C. A., Molyneux, E. M., Walsh, A. L. & Molyneux, M. E. Malaria and Salmonella infections: cause or coincidence? Trans. R. Soc. Trop. Med. Hyg. 94, 227 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Walsh, A. L., Phiri, A. J., Graham, S. M., Molyneux, E. M. & Molyneux, M. E. Bacteremia in febrile Malawian children: clinical and microbiologic features. Pediatr. Infect. Dis. J. 19, 312–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Maclennan, C. A. et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J. Clin. Invest. 118, 1553–1562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mirza, S. H., Beeching, N. J. & Hart, C. A. Multi-drug resistant typhoid: a global problem. J. Med. Microbiol. 44, 317–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O. & Germanier, R. Progress in vaccines against typhoid fever. Rev. Infect. Dis. 11 (Suppl. 3), S552–S567 (1989).

    Article  PubMed  Google Scholar 

  17. Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Vazquez-Torres, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    CAS  Google Scholar 

  20. Biozzi, G., Howard, J. G., Halpern, B. N., Stiffel, C. & Mouton, D. The kinetics of blood clearance of isotopically labelled Salmonella enteritidis by the reticuloendothelial system in mice. Immunology 3, 74–89 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Warren, J. et al. Increased susceptibility of C1q-deficient mice to Salmonella enterica serovar Typhimurium infection. Infect. Immun. 70, 551–557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dunlap, N. E., Benjamin, W. H. Jr, McCall, R. D. Jr, Tilden, A. B. & Briles, D. E. A 'safe-site' for Salmonella typhimurium is within splenic cells during the early phase of infection in mice. Microb. Pathog. 10, 297–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Richter-Dahlfors, A., Buchan, A. M. J. & Finlay, B. B. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569–580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hormaeche, C. E., Mastroeni, P., Arena, A., Uddin, J. & Joysey, H. S. T cells do not mediate the initial suppression of a Salmonella infection in the RES. Immunology 70, 247–250 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Clare, S. et al. Intracellular adhesion molecule 1 plays a key role in acquired immunity to salmonellosis. Infect. Immun. 71, 5881–5891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Everest, P. et al. Salmonella typhimurium infections in mice deficient in interleukin-4 production: role of IL-4 in infection-associated pathology. J. Immunol. 159, 1820–1827 (1997).

    CAS  PubMed  Google Scholar 

  27. Hess, J., Ladel, C., Miko, D. & Kaufmann, S. H. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J. Immunol. 156, 3321–3326 (1996).

    CAS  PubMed  Google Scholar 

  28. Mastroeni, P., Villarreal, B., Demarco de Hormaeche, R. & Hormaeche, C. E. Serum TNF alpha inhibitor in mouse typhoid. Microb. Pathog. 12, 343–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Mastroeni, P., Villarreal-Ramos, B. & Hormaeche, C. E. Role of T cells, TNF alpha and IFN gamma in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro-Salmonella vaccines. Microb. Pathog. 13, 477–491 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Hirose, K., Nishimura, H., Matsuguchi, T. & Yoshikai, Y. Endogenous IL-15 might be responsible for early protection by natural killer cells against infection with an avirulent strain of Salmonella choleraesuis in mice. J. Leukoc. Biol. 66, 382–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Ramarathinam, L., Niesel, D. W. & Klimpel, G. R. Salmonella typhimurium induces IFN-gamma production in murine splenocytes. Role of natural killer cells and macrophages. J. Immunol. 150, 3973–3981 (1993).

    CAS  PubMed  Google Scholar 

  32. Muotiala, A. & Makela, P. H. The role of IFN-gamma in murine Salmonella typhimurium infection. Microb. Pathog. 8, 135–141 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Mastroeni, P. et al. Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation. Infect. Immun. 66, 4767–4776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Everest, P., Roberts, M. & Dougan, G. Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect. Immun. 66, 3355–3364 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mastroeni, P., Skepper, J. N. & Hormaeche, C. E. Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections. Infect. Immun. 63, 3674–3682 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fields, P. I., Swanson, R. V., Haidaris, C. G. & Heffron, F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl Acad. Sci. USA 83, 5189–5193 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mastroeni, P. et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192, 237–248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. & Fang, F. C. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192, 227–236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11939–11943 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Hormaeche, C. E. Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 37, 311–318 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hormaeche, C. E. Genetics of natural resistance to salmonellae in mice. Immunology 37, 319–327 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hormaeche, C. E. The natural resistance of radiation chimeras to S. typhimurium C5. Immunology 37, 329–332 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. White, J. K., Mastroeni, P., Popoff, J. F., Evans, C. A. & Blackwell, J. M. Slc11a1-mediated resistance to Salmonella enterica serovar Typhimurium and Leishmania donovani infections does not require functional inducible nitric oxide synthase or phagocyte oxidase activity. J. Leukoc. Biol. 77, 311–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30, 175–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Chakravortty, D., Hansen-Wester, I. & Hensel, M. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195, 1155–1166 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eriksson, S. et al. Salmonella typhimurium mutants that downregulate phagocyte nitric oxide production. Cell. Microbiol. 2, 239–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. De Groote, M. A. et al. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl Acad. Sci. USA 94, 13997–14001 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garvis, S. G., Beuzon, C. R. & Holden, D. W. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell. Microbiol. 3, 731–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sheppard, M. et al. Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell. Microbiol. 5, 593–600 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Brown, S. P. et al. Intracellular demography and the dynamics of Salmonella enterica infections. PLoS Biol. 4, e349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grant, A. J. et al. Caspase-3-dependent phagocyte death during systemic Salmonella enterica serovar Typhimurium infection of mice. Immunology 125, 28–37 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mastroeni, P., Villarreal-Ramos, B. & Hormaeche, C. E. Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect. Immun. 61, 3981–3984 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McSorley, S. J. & Jenkins, M. K. Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar Typhimurium. Infect. Immun. 68, 3344–3348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Menager, N. et al. Fcγ receptors are crucial for the expression of acquired resistance to virulent Salmonella enterica serovar Typhimurium in vivo but are not required for the induction of humoral or T-cell-mediated immunity. Immunology 120, 424–432 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonina, L., Costa, G. B. & Mastroeni, P. Comparative effect of gentamicin and pefloxacin treatment on the late stages of mouse typhoid. New Microbiol. 21, 9–14 (1998).

    CAS  PubMed  Google Scholar 

  59. Maskell, D. J., Hormaeche, C. E., Harrington, K. A., Joysey, H. S. & Liew, F. Y. The initial suppression of bacterial growth in a Salmonella infection is mediated by a localized rather than a systemic response. Microb. Pathog. 2, 295–305 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Foster, G. L. et al. Virulent Salmonella enterica infections can be exacerbated by concomitant infection of the host with a live attenuated S. enterica vaccine via Toll-like receptor 4-dependent interleukin-10 production with the involvement of both TRIF and MyD88. Immunology 124, 469–479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salerno-Goncalves, R., Pasetti, M. F. & Sztein, M. B. Characterization of CD8+ effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J. Immunol. 169, 2196–2203 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Sztein, M. B., Tanner, M. K., Polotsky, Y., Orenstein, J. M. & Levine, M. M. Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans. J. Immunol. 155, 3987–3993 (1995).

    CAS  PubMed  Google Scholar 

  63. Schafer, R. & Eisenstein, T. K. Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect. Immun. 60, 791–797 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Navarre, W. W. & Zychlinsky, A. Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell. Microbiol. 2, 265–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Monack, D. M. et al. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J. Exp. Med. 192, 249–258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barnes, P. D., Bergman, M. A., Mecsas, J. & Isberg, R. R. Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J. Exp. Med. 203, 1591–1601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moxon, E. R. & Murphy, P. A. Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc. Natl Acad. Sci. USA 75, 1534–1536 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Mazurkiewicz, P., Tang, C. M., Boone, C. & Holden, D. W. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nature Rev. Genet. 7, 929–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Grant, A. J. et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 6, e74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Coward, C. et al. Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl. Environ. Microbiol. 74, 3857–3867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Conlan, A. J., Coward, C., Grant, A. J., Maskell, D. J. & Gog, J. R. Campylobacter jejuni colonization and transmission in broiler chickens: a modelling perspective. J. R. Soc. Interface 4, 819–829 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ugrinovic, S., Menager, N., Goh, N. & Mastroeni, P. Characterization and development of T-cell immune responses in B-cell-deficient (Igh-6−/−) mice with Salmonella enterica serovar Typhimurium infection. Infect. Immun. 71, 6808–6819 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mastroeni, P., Simmons, C., Fowler, R., Hormaeche, C. E. & Dougan, G. Igh-6−/− (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar Typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect. Immun. 68, 46–53 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Collins, F. M. Vaccines and cell-mediated immunity. Bacteriol. Rev. 38, 371–402 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Acharya, I. L. et al. Prevention of typhoid fever in Nepal with the Vi capsular polysaccharide of Salmonella typhi. A preliminary report. N. Engl. J. Med. 317, 1101–1104 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Klugman, K. P. et al. Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet 2, 1165–1169 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Klugman, K. P., Koornhof, H. J., Robbins, J. B. & Le Cam, N. N. Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine 14, 435–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Mastroeni, P. & Sheppard, M. Salmonella infections in the mouse model: host resistance factors and in vivo dynamics of bacterial spread and distribution in the tissues. Microbes Infect. 6, 398–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Uppington, H. et al. Effect of immune serum and role of individual Fcγ receptors on the intracellular distribution and survival of Salmonella enterica serovar Typhimurium in murine macrophages. Immunology 119, 147–158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mastroeni, P., Harrison, J. A., Chabalgoity, J. A. & Hormaeche, C. E. Effect of interleukin 12 neutralization on host resistance and gamma interferon production in mouse typhoid. Infect. Immun. 64, 189–196 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mastroeni, P. et al. Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect. Immun. 67, 478–483 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vazquez-Torres, A., Fantuzzi, G., Edwards, C. K. 3rd, Dinarello, C. A. & Fang, F. C. Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc. Natl Acad. Sci. USA 98, 2561–2565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bonhoeffer, S., May, R. M., Shaw, G. M. & Nowak, M. A. Virus dynamics and drug therapy. Proc. Natl Acad. Sci. USA 94, 6971–6976 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wodarz, D. & Nowak, M. A. HIV therapy: managing resistance. Proc. Natl Acad. Sci. USA 97, 8193–8195 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levin, B. R. & Antia, R. Why we don't get sick: the within-host population dynamics of bacterial infections. Science 292, 1112–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Levin, B. R. Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147, 881–898 (1996).

    Article  Google Scholar 

  89. Antia, R., Levin, B. R. & May, R. M. Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am. Nat. 144, 457–472 (1994).

    Article  Google Scholar 

  90. Young, D., Stark, J. & Kirschner, D. Systems biology of persistent infection: tuberculosis as a case study. Nature Rev. Microbiol. 6, 520–528 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Biotechnology and Biological Sciences Research Council, the Wellcome Trust, the Medical Research Council and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Mastroeni.

Related links

Related links

DATABASES

Entrez Genome Project

Campylobacter jejuni

Salmonella enterica

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastroeni, P., Grant, A., Restif, O. et al. A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat Rev Microbiol 7, 73–80 (2009). https://doi.org/10.1038/nrmicro2034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing