Key Points
-
Shewanella species couple the decomposition of organic matter to the reduction of various terminal electron acceptors that are present in the diverse environments that they can inhabit.
-
The metabolic versatility of Shewanella species makes them important mediators of carbon cycling, and allows for their potential use in the remediation of environments that are contaminated with radionuclides and other toxic metals, as well as potential sources of alternative energy through microbial fuel cells.
-
Systems-biology is being used to better understand the environmental sensing, signal-transduction and metabolic- and energy-generating pathways of the model organism Shewanella oneidensis MR-1.
-
Among other insights, this analysis has revealed the presence of novel metabolic pathways, the reorganization of regulatory pathways compared with Escherichia coli and other model organisms, and a novel mechanism for dealing with oxidative stress through autoaggregation.
-
Comparative genomic analysis, based on the availability of genome sequences for 23 Shewanella species, has facilitated the transfer of information gained from the study of S. oneidensis MR-1 across members of the genus.
-
Many of the proteins that are important for respiratory diversity in S. oneidensis MR-1 are conserved in many members of the genus.
Abstract
Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Co-fitness analysis identifies a diversity of signal proteins involved in the utilization of specific c-type cytochromes
Annals of Microbiology Open Access 24 September 2022
-
A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems
Nature Communications Open Access 24 September 2022
-
In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent
The ISME Journal Open Access 23 September 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Myers, C. & Nealson, K. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321 (1988). First report of the isolation of Alteromonas putrefaciens (later renamed Shewanella oneidensis MR-1), a bacterium that can grow by dissimilatory Mn(IV) reduction.
Nealson, K. H., Myers, C. R. & Wimpee, B. B. Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res. A 38, S907–S920 (1991).
Caccavo, F. Jr, Blakemore, R. P. & Lovley, D. R. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58, 3211–3216 (1992).
Perry, K. A., Kostka, J. E., Luther, G. W. & Nealson, K. H. Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259, 801–803 (1993).
Fredrickson, J. K. et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62, 3239–3257 (1998).
Obuekwe, C. O. & Westlake, D. W. S. Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude-oil. Can. J. Microbiol. 28, 989–992 (1982).
Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 49, 705–724 (1999).
Arnold, R. G., DiChristina, T. J. & Hoffman, M. R. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol. Bioeng. 32, 1081–1096 (1988).
Arnold, R. G., DiChristina, T. J. & Hoffmann, M. R. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 (“Pseudomonas ferrireductans”). Appl. Environ. Microbiol. 52, 281–289 (1986).
Balashova, V. V. & Zavarin, G. A. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48, 773–778 (1979).
Obuekwe, C. O., Westlake, D. W. & Cook, F. D. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can. J. Microbiol. 27, 692–697 (1981).
Wielinga, B., Mizuba, M. M., Hansel, C. M. & Fendorf, S. Iron promoted reduction of chromate by dissimilatory iron reducing bacteria. Environ. Sci. Technol. 35, 522–527 (2001).
Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther, G. W. & Nealson, K. H. Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Mar. Chem. 57, 347–354 (1997).
Wildung, R. E. et al. Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Appl. Environ. Microbiol. 66, 2451–2460 (2000).
Lloyd, J. R., Yong, P. & Macaskie, L. E. Biological reduction and removal of Np(V) by two microorganisms. Environ. Sci. Technol. 34, 1297–1301 (2000).
Boukhalfa, H., Icopini, G. A., Reilly, S. D. & Neu, M. P. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl. Environ. Microbiol. 73, 5897–5903 (2007).
Klonowska, A., Heulin, T. & Vermeglio, A. Selenite and tellurite reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 71, 5607–5609 (2005).
Carpentier, W. et al. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl. Environ. Microbiol. 69, 3636–3639 (2003).
Zhao, J. S., Manno, D., Beaulieu, C., Paquet, L. & Hawari, J. Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int. J. Syst. Evol. Microbiol. 55, 1511–1520 (2005).
Zhao, J. S., Manno, D., Thiboutot, S., Ampleman, G. & Hawari, J. Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria. Int. J. Syst. Evol. Microbiol. 57, 2155–2162 (2007).
Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007). A recent review that described the ecological and potential biotechnological applications of Shewanella species.
Höfle, M. G. & Brettar, I. Genotyping of heterotrophic bacteria from the central Baltic Sea by use of low-molecular-weight RNA profiles. Appl. Environ. Microbiol. 62, 1383–1390 (1996).
Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnol. 20, 1118–1123 (2002). Report on the complete genome sequencing of S. oneidensis MR-1.
Ulrich, L. E. & Zhulin, I. B. MiST: a microbial signal transduction database. Nucleic Acids Res. 35, D386–D390 (2007).
Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential and light. United States Department of Energy Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).
Wuichet, K. & Zhulin, I. B. Molecular evolution of sensory domains in cyanobacterial chemoreceptors. Trends Microbiol. 11, 200–203 (2003).
Alexandre, G., Greer-Phillips, S. & Zhulin, I. B. Ecological role of energy taxis in microorganisms. FEMS Microbiol. Rev. 28, 113–126 (2004).
Li, J., Romine, M. F. & Ward, M. J. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. FEMS Microbiol. Lett. 273, 180–186 (2007).
Romine, M. F., Carlson, T. S., Norbeck, A. D., McCue, L. & Lipton, M. S. Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl. Environ. Microbiol. 74, 3257–3265 (2008). Used comparative genomics of multiple S. oneidensis MR-1 strains to more accurately map and identify pseudogenes and mobile elements.
Nealson, K. H., Moser, D. P. & Saffarini, D. A. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl. Environ. Microbiol. 61, 1551–1554 (1995).
Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).
Beavo, J. A. & Brunton, L. L. Cyclic nucleotide research — still expanding after half a century. Nature Rev. Mol. Cell Biol. 3, 710–718 (2002).
Tamayo, R., Pratt, J. T. & Camilli, A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61, 131–148 (2007).
Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).
Zhulin, I. B., Nikolskaya, A. N. & Galperin, M. Y. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J. Bacteriol. 185, 285–294 (2003).
Botsford, J. L. & Harman, J. G. Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100–122 (1992).
Saffarini, D. A., Schultz, R. & Beliaev, A. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J. Bacteriol. 185, 3668–3671 (2003). First report of the unusual role of CRP in the regulation of anaerobic respiration in Shewanella spp.
Kiley, P. J. & Beinert, H. Oxygen sensing by the global regulator, FNR: the role of the iron–sulfur cluster. FEMS Microbiol. Rev. 22, 341–352 (1998).
Saffarini, D. A. & Nealson, K. H. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J. Bacteriol. 175, 7938–7944 (1993).
Beliaev, A. S. et al. Microarray transcription profiling of a Shewanella oneidensis etrA mutant. J. Bacteriol. 184, 4612–4616 (2002).
Maier, T. M. & Myers, C. R. Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA. J. Bacteriol. 183, 4918–4926 (2001).
Beliaev, A. S. et al. in Joint Genomics: GTL Contractor Workshop IV. 94 (United States Department of Energy, North Bethesda, 2006).
McLean, J. S. et al. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ. Microbiol. 10, 1861–1876 (2008). A systems-biology approach was used to investigate oxygen-induced aggregation in S. oneidensis MR-1.
Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007). Described the CLR algorithm and its application to the inference of transcriptional regulatory interactions in E. coli.
Beliaev, A. & Saffarini, D. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180, 6292–6297 (1998).
Myers, J. M. & Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260–269 (2001).
Beliaev, A., Saffarini, D., McLaughlin, J. & Hunnicut, D. MtrC, an outer membrane decaheme c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39, 722–730 (2001).
Carpentier, W., De Smet, L., Van Beeumen, J. & Brige, A. Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J. Bacteriol. 187, 3293–3301 (2005).
Beliaev, A. S. et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 187, 7138–7145 (2005).
Rodionov, D. A. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem. Rev. 107, 3467–3497 (2007).
Rodionov, D. A. et al. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res. 36, 2047–2059 (2008).
Yang, C. et al. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J. Biol. Chem. 281, 29872–29885 (2006). Used comparative genomics in SEED and experiments to reconstruct the chitin and GlcNAc metabolic subsystem and regulatory network.
Meyer, T. et al. Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8, 57–77 (2004).
Bouhenni, R., Gehrke, A. & Saffarini, D. Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl. Environ. Microbiol. 71, 4935–4937 (2005).
Dale, J. R., Wade, R. & DiChristina, T. J. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J. Bacteriol. 189, 1036–1043 (2007).
Myers, C. R. & Myers, J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 179, 1143–1152 (1997).
Myers, J. M. & Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 182, 67–75 (2000).
Gralnick, J. A., Vali, H., Lies, D. P. & Newman, D. K. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc. Natl Acad. Sci. USA 103, 4669–4674 (2006).
Myers, C. R. & Myers, J. M. Fumarate reductase is a soluble enzyme in anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 98, 13–19 (1992).
Myers, C. R. & Myers, J. M. Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett. Appl. Microbiol. 25, 162–168 (1997).
Cruz-Garcia, C., Murray, A. E., Klappenbach, J. A., Stewart, V. & Tiedje, J. M. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J. Bacteriol. 189, 656–662 (2007).
Bordi, C., Lobbi-Nivol, C., Mejean, V. & Patte, J. C. Effects of ISSo2 insertions in structural and regulatory genes of the trimethylamine oxide reductase of Shewanella oneidensis. J. Bacteriol. 185, 2042–2045 (2003).
Nealson, K. H. & Scott, J. in The Prokaryotes 3rd edn Vol.6 (eds Dworkin, M. et al.) 1133–1151 (Springer, New York, 2006).
Serres, M. H. & Riley, M. Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J. Bacteriol. 188, 4601–4609 (2006). Used a biochemically oriented genome-sequence analysis to define carbon metabolism in S. oneidensis MR-1.
Pinchuk, G. E. et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl. Environ. Microbiol. 74, 1198–1208 (2008).
Driscoll, M. E. et al. Identification of diverse carbon utilization pathways in Shewanella oneidensis MR-1 via expression profiling. Genome Inform. 18, 287–298 (2007).
Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).
Mahadevan, R. et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006).
Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004).
Scott, J. H. & Nealson, K. H. A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J. Bacteriol. 176, 3408–3411 (1994).
Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).
Pinchuk, G. et al. in Joint Genomics: GTL Awardee Workshop VI and Metabolic Engineering 2008. 66 (United States Department of Energy, North Bethesda, 2008).
Reed, J. L. et al. Systems approach to refining genome annotation. Proc. Natl Acad. Sci. USA 103, 17480–17484 (2006).
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
Lipton, M. S. et al. AMT tag approach to proteomic characterization of Deinococcus radiodurans and Shewanella oneidensis. Methods Biochem. Anal. 49, 113–134 (2006).
Elias, D. A. et al. Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics 5, 3120–3230 (2005).
Romine, M. F. et al. Validation of Shewanella oneidensis MR-1 small proteins by AMT tag-based proteome analysis. OMICS 8, 239–254 (2004).
Gupta, N. et al. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res. 17, 1362–1377 (2007).
Gupta, N. et al. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res. 21 Apr 2008 (doi: 10.1101/gr.074344.107).
Serres, M. H. & Riley, M. Structural domains, protein modules, and sequence similarities enrich our understanding of the Shewanella oneidensis MR-1 proteome. OMICS 8, 306–321 (2004).
Karp, P. D., Paley, S. & Romero, P. The Pathway Tools Software. Bioinformatics 18, S225–S232 (2002).
Brettar, I., Christen, R. & Höfle, M. G. Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 52, 2211–2217 (2002).
Lubitz, S. P. & Weiner, J. H. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch. Biochem. Biophys. 418, 205–216 (2003).
Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).
Ziemke, F., Brettar, I. & Höfle, M. G. Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat. Microb. Ecol. 13, 63–74 (1997).
Thompson, J. R. et al. Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313 (2005).
Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).
Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).
Committee on Metagenomics: Challenges and Functional Applications, National Research Council of the National Academies. The New Science of Metagenomics: Revealing the Secrets of our Microbial Planet (The National Academies, Washington DC, 2007).
Ram, R. J. et al. Community proteomics of a natural microbial biofilm. Science 308, 1915–1920 (2005).
Parro, V., Moreno-Paz, M. & Gonzalez-Toril, E. Analysis of environmental transcriptomes by DNA microarrays. Environ. Microbiol. 9, 453–464 (2007).
Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).
Kim, B. H. et al. Electro–chemical activity of an Fe(III)-reducing bacterium Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13, 475–478 (1999).
Pham, T. H., Jang, J. K., Chang, I. S. & Kim, B. H. Improvement of the cathode reaction of a mediator-less microbial fuel cell. J. Microbiol. Biotech. 14, 324–329 (2004).
Rabaey, K. et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1, 9–18 (2007).
Bretschger, O. et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007).
Myers, C. R. & Myers, J. M. The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins. Lett. Appl. Microbiol. 39, 466–470 (2004).
DiChristina, T. J., Moore, C. M. & Haller, C. A. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II proteins secretion gene. J. Bacteriol. 184, 142–151 (2002).
Donald, J. W., Hicks, M. G., Richardson, D. J. & Palmer, T. The c-type cytochrome OmcA localizes to the outer membrane upon heterologous expression in Escherichia coli. J. Bacteriol. 16 May 2008 (doi:10.1128/jb.00395–08).
Shi, L. et al. Direct Involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol. 23 May 2008 (doi:10.1128/jb.00514–08).
Myers, C. R. & Myers, J. M. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett. Appl. Microbiol. 37, 254–258 (2003).
Shi, L. et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 188, 4705–4714 (2006).
Xiong, Y. et al. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J. Am. Chem. Soc. 128, 13978–13979 (2006).
Hartshorne, R. S. et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J. Biol. Inorg. Chem. 12, 1083–1094 (2007).
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).
von Canstein, H., Ogawa, J., Shimuzu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).
Markowitz, V. M. & Kyrpides, N. C. Comparative genome analysis in the integrated microbial genomes (IMG) system. Methods Mol. Biol. 395, 35–56 (2007).
Venkateswaran, K., Dollhopf, M. E., Aller, R., Stackebrandt, E. & Nealson, K. H. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int. J. Syst. Bacteriol. 48, 965–972 (1998).
Brettar, I., Moore, E. R. B. & Höfle, M. G. Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the central Baltic Sea. Microb. Ecol. 42, 295–305 (2001).
Delong, E. F., Franks, D. G. & Yayanos, A. A. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63, 2105–2108 (1997).
Bowman, J. P. et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47, 1040–1047 (1997).
Zhao, J. S., Manno, D., Leggiadro, C., O'Neil, D. & Hawari, J. Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int. J. Syst. Evol. Microbiol. 56, 205–212 (2006).
Kulakova, L., Galkin, A., Kurihara, T., Yoshimura, T. & Esaki, N. Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 65, 611–617 (1999).
Gao, H. et al. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 56, 1911–1916 (2006).
Leonardo, M. R. et al. Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int. J. Syst. Bacteriol. 49, 1341–1351 (1999).
Wang, F., Wang, P., Chen, M. & Xiao, X. Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8, 165–168 (2004).
Saltikov, C. W., Cifuentes, A., Venkateswaran, K. & Newman, D. K. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69, 2800–2809 (2003).
Murray, A. E. et al. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Natl Acad. Sci. USA 98, 9853–9358 (2001).
Nogi, Y., Kato, C. & Horikoshi, K. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch. Microbiol. 170, 331–338 (1998).
Makemson, J. C. et al. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int. J. Syst. Bacteriol. 47, 1034–1039 (1997).
Acknowledgements
The authors thank the numerous members of the Shewanella Federation for useful discussions and concepts during the course of their systems biology investigations of Shewanella, including E.J. Crane, H. Gao, C. Giometti, K. Kostantinidis, M. Lipton, M. Marshall, L.-A. McCue, A. Obraztsova, N. Samatova, H. Scholten, E. Uberbacher, L. Ulrich, M. Ward and J. Zhou. The authors have been supported by the US Department of Energy (DOE) through the Shewanella Federation consortium and by the National Science Foundation (grant number NSFMCB0543501).
Author information
Authors and Affiliations
Corresponding authors
Related links
Related links
DATABASES
Entrez Genome Project
Entrez Protein
FURTHER INFORMATION
Glossary
- Dissimilatory
-
An enzymatic reaction in which a compound is oxidized or reduced but is not assimilated or incorporated into cells for the purposes of biosynthesis during, for example, respiration.
- Electron acceptor
-
An oxidant used during cellular respiration.
- One-component system
-
A regulatory protein that combines both sensory and regulatory capabilities that usually reside in two distinct domains. The repressor of the lactose operons (LacI) and the catabolite activator protein of Escherichia coli are classical examples.
- Two-component system
-
A regulatory system that is typically composed of two proteins, a sensor histidine kinase and a cognate response regulator. EnvZ and OmpR of Escherichia coli are classical examples.
- PAS domain
-
A ubiquitous sensory domain that is found in many one-component and two-component regulatory systems in prokaryotes, as well as in regulatory proteins in eukaryotes. The PAS domain was named after three proteins that it was found in: Per (period circadian protein), Arnt (receptor nuclear translocator protein) and Sim (single-minded protein).
- Diguanylate cyclase
-
An enzyme that synthesizes cyclic diguanylic acid and typically contains the canonical amino acid motif GGDEF.
- Regulon
-
A set of genes that is controlled by a common transcription factor or regulatory RNA. A regulon usually includes genes that are implicated in a common cellular subsystem or pathway.
- AMT-tag proteome database
-
An accurate mass and time (AMT)-tag proteome database that contains identifications for tryptic peptides based on analysis by capillary liquid chromatography followed by tandem mass spectrometry of various cellular lysates of a single organism.
- Core genome
-
In the context of this Review, the core genome refers to the set of proteins that have been found in each Shewanella genome analysed to date and are of high sequence similarity and are therefore predicted to encode the same function.
Rights and permissions
About this article
Cite this article
Fredrickson, J., Romine, M., Beliaev, A. et al. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6, 592–603 (2008). https://doi.org/10.1038/nrmicro1947
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1947
This article is cited by
-
Unexplored diversity and ecological functions of transposable phages
The ISME Journal (2023)
-
In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent
The ISME Journal (2023)
-
Co-fitness analysis identifies a diversity of signal proteins involved in the utilization of specific c-type cytochromes
Annals of Microbiology (2022)
-
NapB Restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants
Communications Biology (2022)
-
cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors
Nature Communications (2022)