Redefining viruses: lessons from Mimivirus

Abstract

Viruses are the most abundant living entities and probably had a major role in the evolution of life, but are still defined using negative criteria. Here, we propose to divide biological entities into two groups of organisms: ribosome-encoding organisms, which include eukaryotic, archaeal and bacterial organisms, and capsid-encoding organisms, which include viruses. Other replicons (for example, plasmids and viroids) can be termed 'orphan replicons'. Based on this suggested classification system, we propose a new definition for a virus — a capsid-encoding organism that is composed of proteins and nucleic acids, self-assembles in a nucleocapsid and uses a ribosome-encoding organism for the completion of its life cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mimivirus infecting Acanthamoeba polyphaga.
Figure 2: Clusters of orthologous groups (COGs) in Mimivirus and traditional cellular organisms.
Figure 3: Capsid proteins from viruses that infect organisms from all three domains of life.
Figure 4: Redefining viruses.

References

  1. 1

    Pace, N. R. Time for a change. Nature 441, 289 (2006).

  2. 2

    Bergh, D., Borsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses in aquatic environments. Nature 340, 467–468 (1989).

  3. 3

    Edwards, R. A. & Rohwer, F. Viral metagenomics. Nature Rev. Microbiol. 3, 504–510 (2005).

  4. 4

    Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16 (2006).

  5. 5

    Villarreal, L. P. Viruses and the Evolution of Life 1–426 (ASM, Washington, 2005).

  6. 6

    Prudhomme, S., Bonnaud, B. & Mallet, F. Endogenous retroviruses and animal reproduction. Cytogenet. Genome Res. 110, 353–364 (2005).

  7. 7

    Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl Acad. Sci USA 103, 3669–3674 (2006).

  8. 8

    Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view. Nature Rev. Microbiol. 4, 837–848 (2006).

  9. 9

    Blanc, G. et al. Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 3, e14 (2007).

  10. 10

    La Scola, B. et al. A giant virus in amoebae. Science 299, 2033 (2003).

  11. 11

    Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

  12. 12

    Suzan-Monti, M., Scola, B. L., Barrassi, L., Espinosa, L. & Raoult, D. Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus. PLoS ONE 2, e328 (2007).

  13. 13

    Raoult, D., La Scola, B. & Birtles, R. The discovery and characterization of Mimivirus, the largest known virus and putative pneumonia agent. Clin. Infect. Dis. 45, 95–102 (2007).

  14. 14

    Popper, K. The Logic of Scientific Discovery 1–544 (Taylor & Francis Group, London, 2002).

  15. 15

    Pasteur, L. La théorie des germes et ses applications en médecine et en chirurgie. C. R. Acad. Sci. 86, 1037–1043 (1878).

  16. 16

    Fuerst, J. A. Intracellular compartmentation in planctomycetes. Annu. Rev. Microbiol. 59, 299–328 (2005).

  17. 17

    Woese, C. R. There must be a prokaryote somewhere: microbiology's search for itself. Microbiol. Rev. 58, 1–9 (1994).

  18. 18

    Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

  19. 19

    Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee on Taxonomy of Viruses 1–1259 (Academic, San Diego, 2005).

  20. 20

    Dodds, J. A. Satellite tobacco mosaic virus. Curr. Top. Microbiol. Immunol. 239, 145–157 (1999).

  21. 21

    Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).

  22. 22

    Lwoff, A. The concept of virus. J. Gen. Microbiol. 17, 239–253 (1957).

  23. 23

    Raoult, D. The journey from Rickettsia to Mimivirus. ASM News 71, 278–284 (2005).

  24. 24

    Burnet, M. General discussion of virus nomenclature. Ann. NY Acad. Sci. 56, 627–630 (1953).

  25. 25

    Burnet, M. Virus classification and nomenclature. Ann. NY Acad. Sci. 56, 383–390 (1953).

  26. 26

    Stanley, W. M. Virus as a chemical agent. Rev. Med. (Mex.) 32, 209–212 (1952).

  27. 27

    Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

  28. 28

    Koonin, E. V. & Martin, W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 21, 647–654 (2005).

  29. 29

    Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct 19, 1–29 (2006).

  30. 30

    Koonin, E. V. Virology: Gulliver among the Lilliputians. Curr. Biol. 15, R167–R169 (2005).

  31. 31

    Audic, S. et al. Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet. 3, e138 (2007).

  32. 32

    Engels, F. Dialectics of Nature 1–410 (Wellred Publications, London, 2006).

  33. 33

    Novoa, R. R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97, 147–172 (2005).

  34. 34

    Claverie, J. M. Virus takes center stage in cellular evolution. Genome Biol. 7, 1–10 (2006).

  35. 35

    Smith, H. O., Hutchison, C. A., Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).

  36. 36

    Nakabachi, A. et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314, 267 (2006).

  37. 37

    Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol. 1, 127–136 (2003).

  38. 38

    Iyer, L. M., Aravind, L. & Koonin, E. V. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75, 11720–11734 (2001).

  39. 39

    Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).

  40. 40

    Bamford, D. H., Grimes, J. M. & Stuart, D. I. What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15, 655–663 (2005).

  41. 41

    Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA 99, 14758–14763 (2002).

  42. 42

    Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl Acad. Sci. USA 101, 7716–7720 (2004).

  43. 43

    Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

  44. 44

    Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79, 14967–14970 (2005).

Download references

Acknowledgements

The authors thank A. Hecker and P.E. Fournier for help with the figures.

Author information

Correspondence to Didier Raoult.

Related links

Related links

DATABASES

Entrez Genome

PBCV1

PRD1

STIV

TMV

Entrez Genome Project

Candidatus Carsonella ruddii

Encephalitozoon cuniculi

Escherichia coli

Gemmata obscuriglobus

Mycoplasma mycoides

Nanoarchaeum equitans

Sulfolobus solfataricus P2

FURTHER INFORMATION

Didier Raoult's homepage

Chambers Reference Online

NCBI COG s database

Oxford English Dictionary Online

Protein Data Bank

Wikipedia

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raoult, D., Forterre, P. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol 6, 315–319 (2008). https://doi.org/10.1038/nrmicro1858

Download citation

Further reading