Abstract
Anaerobic ammonium oxidation (anammox) bacteria, which were discovered in waste-water sludge in the early 1990s, have the unique metabolic ability to combine ammonium and nitrite or nitrate to form nitrogen gas. This discovery led to the realization that a substantial part of the enormous nitrogen losses that are observed in the marine environment — up to 50% of the total nitrogen turnover — were due to the activity of these bacteria. In this Timeline, Gijs Kuenen recalls the discovery of these unique microorganisms and describes the continuing elucidation of their roles in environmental and industrial microbiology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments
ISME Communications Open Access 19 May 2022
-
Response and resilience of anammox consortia to nutrient starvation
Microbiome Open Access 01 February 2022
-
Nitrification mainly driven by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in an anammox-inoculated wastewater treatment system
AMB Express Open Access 27 November 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Broda, E. Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491–493 (1977).
Mulder, A. Anoxic ammonia oxidation. US Patent 5,078,884 (1992).
Mulder, A., van de Graaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–184 (1995).
van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251 (1995).
van de Graaf, A. A., deBruijn, P., Robertson, L. A., Jetten, M. S. M. & Kuenen, J. G. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor. Microbiology-UK 143, 2415–2421 (1997).
Schalk, J., Oustad, H., Kuenen, J. G. & Jetten, M. S. M. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiol. Lett. 158, 61–67 (1998).
Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).
Strous, M., Van Gerven, E., Kuenen, J. G. & Jetten, M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Appl. Environ. Microbiol. 63, 2446–2448 (1997).
Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).
Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 413–429 (2001).
Schalk, J., de Vries, S., Kuenen, J. G. & Jetten, M. S. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39, 5405–5412 (2000).
Shimamura, M. et al. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl. Environ. Microbiol. 73, 1065–1072 (2007).
Schmid, M. et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93–106 (2000).
Damsté, J. S. S. et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419, 708–712 (2002).
Mascitti, V. & Corey, E. J. Total synthesis of (±)-pentacycloanammoxic acid. J. Am. Chem. Soc. 126, 15664–15665 (2004).
Damste, J. S. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M. & Jetten, M. S. M. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272, 4270–4283 (2005).
Boumann, H. A. et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. FEMS Microbiol. Lett. 258, 297–304 (2006).
Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794 (2006).
Schouten, S. et al. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70, 3785–3788 (2004).
Guven, D. et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 71, 1066–1071 (2005).
Kartal, B. et al. Candidatus ''Anammoxoglobus propionicus'' a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 30, 39–49 (2007).
Kartal, B. et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9, 635–642 (2007).
Wagner, M. & Horn, M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17, 241–249 (2006).
Kuypers, M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).
Hamersley, M. R. et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52, 923–933 (2007).
Schubert, C. J. et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol. 8, 1857–1863 (2006).
Hao, X. D., Heijnen, J. J. & Van Loosdrecht, M. C. M. Model-based evaluation of temperature and inflow variations on a partial nitrification–ANAMMOX biofilm process. Water Res. 36, 4839–4849 (2002).
Third, K. A., Sliekers, A. O., Kuenen, J. G. & Jetten, M. S. M. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24, 588–596 (2001).
Sliekers, A. O. et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 36, 2475–2482 (2002).
Sliekers, A. O., Third, K. A., Abma, W., Kuenen, J. G. & Jetten, M. S. CANON and Anammox in a gas-lift reactor. FEMS Microbiol. Lett. 218, 339–344 (2003).
Third, K. A. et al. Treatment of nitrogen-rich wastewater using partial nitrification and anammox in the CANON process. Water Sci. Technol. 52, 47–54 (2005).
Egli, K. et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175, 198–207 (2001).
Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002).
Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68, 3802–3808 (2002).
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T. & Meyer, R. L. Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnol. Oceanogr. Methods 1, 63–73 (2003).
Kuypers, M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003).
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuna-Gonzalez, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).
Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156, 457–464 (2005).
Kuypers, M. M. M., Lavik, G. & Thamdrup, B. in Past and Present Water Column Anoxia (ed. Neretin, L. N.) 311–335 (Springer, Sevastopol, 2006).
Rysgaard, S., Glud, R. N., Risgaard-Petersen, N. & Dalsgaard, T. Denitrification and anammox activity in Arctic marine sediments. Limnol. Oceanogr. 49, 1493–1502 (2004).
Penton, C. R., Devol, A. H. & Tiedje, J. M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol. 72, 6829–6832 (2006).
van Dongen, U., Jetten, M. S. M. & van Loosdrecht, M. C. M. The SHARON®–Anammox® process for treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153–160 (2001).
Jetten, M. S. M. et al. Improved nitrogen removal by application of new nitrogen-cycle bacteria. Rev. Environ. Sci. Biotechnol. 1, 51–63 (2002).
van der Star, W. R. L. et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41, 4149–4163 (2007).
van Niftrik, L. A. et al. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett. 233, 7–13 (2004).
van Niftrik, L. et al. Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J. Struct. Biol. 2 Jun 2007 (doi:10.1016/j.jsb.2007.05.005).
van Niftrik, L. et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage and localization of cytochrome c proteins. J. Bacteriol. 190, 708–717 (2007).
Lam, P. et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc. Natl Acad. Sci. USA 104, 7104–7109 (2007).
Koenneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archeon. Nature 437, 543–546 (2005).
Acknowledgements
The author thanks M. Strous and M. Jetten for comments on the manuscript.
Author information
Authors and Affiliations
Related links
Related links
DATABASES
Entrez Genome Project
Candidatus Brocadia anammoxidans
Candidatus Kuenenia stuttgartiensis
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Kuenen, J. Anammox bacteria: from discovery to application. Nat Rev Microbiol 6, 320–326 (2008). https://doi.org/10.1038/nrmicro1857
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1857
This article is cited by
-
Response and resilience of anammox consortia to nutrient starvation
Microbiome (2022)
-
Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments
ISME Communications (2022)
-
A comprehensive review on nitrate pollution and its remediation: conventional and recent approaches
Sustainable Water Resources Management (2022)
-
Microbial community changes during anaerobic nitrate reduction and Fe(II) oxidation of a coastal saline paddy soil under alkaline pH
Journal of Soils and Sediments (2022)
-
Effects of Haematococcus pluvialis on the water quality and performance of Litopenaeus vannamei using artificial substrates and water exchange systems
Aquaculture International (2022)