Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Salmonellae interplay with host cells

Key Points

  • Salmonellae are globally important Gram-negative bacterial pathogens that infect a range of hosts and cause several diseases, including gastroenteritis and typhoid fever. Orally ingested bacteria can survive in the inhospitable environment of the digestive tract and relocate to the intestine, where they invade the intestinal epithelia and either stimulate inflammation and fluid secretion (gastroenteritis) or cross the intestinal barrier and disseminate throughout the reticuloendothelial system (typhoid fever).

  • Salmonellae use two type III secretion systems (T3SSs) to deliver bacterial virulence proteins, called effectors, directly into host cells. The T3SS that is encoded on Salmonella pathogenicity island (SPI)-1 is responsible for delivering effectors across the plasma membrane and is involved in the invasion of epithelial cells and modulation of inflammation responses. The SPI2-encoded T3SS delivers effectors across the vacuolar membrane and contributes to the survival and replication of intracellular salmonellae. Recent findings suggest that the functions of these two T3SSs are not completely separate and might overlap.

  • The activities of several SPI1 T3SS effectors stimulate host actin-cytoskeletal rearrangements by either directly modulating actin dynamics or activating host GTPases, which results in membrane ruffling and bacterial uptake. The activation of host GTPases also triggers cell-signalling cascades, which promotes the production of host inflammatory responses.

  • After bacterial internalization, the host-cell actin cytoskeleton is returned to its normal shape and the inflammatory response is down-modulated. This reversal of actin rearrangement is modulated by SPI1 T3SS effectors, which manipulate the host-cell GTPases and signalling molecules that are involved in inflammation. Intracellular salmonellae resist killing by a range of host innate immune responses and reside in a specialized vacuole, called the Salmonella-containing vacuole (SCV). Sensing of antimicrobial peptides and the low pH of the SCV activates a large number of Salmonella genes that are involved in the remodelling of surface proteins and regulation of virulence genes

  • The intracellular environment induces expression of the SPI2 T3SS, which is responsible for specific intracellular phenotypes, such as the formation of Salmonella-induced filaments, maintenance of the SCV membrane, perinuclear localization of the SCV and manipulation of the microtubule and actin networks around the SCV.

Abstract

Salmonellae are important causes of enteric diseases in all vertebrates. Characterization of the molecular mechanisms that underpin the interactions of salmonellae with their animal hosts has advanced greatly over the past decade, mainly through the study of Salmonella enterica serovar Typhimurium in tissue culture and animal models of infection. Knowledge of these bacterial processes and host responses has painted a dynamic and complex picture of the interaction between salmonellae and animal cells. This Review focuses on the molecular mechanisms of these host–pathogen interactions, in terms of their context, significance and future perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biology of salmonellae infection.
Figure 2: Structure of the Salmonella type III secretion system (T3SS).
Figure 3: SPI1 T3SS-induced changes in host cells.
Figure 4: Formation of the SCV and induction of the SPI2 T3SS within the host cell.

Similar content being viewed by others

References

  1. Pegues, D. A., Ohl, M. E. & Miller, S. I. in Principles and Practice of Infectious Diseases (eds Mandell, G. L., Bennet, J. E. & Dolin, R.) 2636–2654 (Churchill Livingstone, New York, 2005).

    Google Scholar 

  2. Garcia-del Portillo, F., Foster, J. W. & Finlay, B. B. Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect. Immun. 61, 4489–4492 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J. & Neutra, M. R. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun. 60, 1786–1792 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Selsted, M. E., Miller, S. I., Henschen, A. H. & Ouellette, A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol. 118, 929–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Prouty, A. M., Brodsky, I. E., Falkow, S. & Gunn, J. S. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150, 775–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Francis, C. L., Starnbach, M. N. & Falkow, S. Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol. Microbiol. 6, 3077–3087 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi, A. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am. J. Pathol. 50, 109–136 (1967). This reference showed membrane ruffling that is induced by Salmonella spp. in intestinal cells by microscopy for the first time.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baumler, A. J., Tsolis, R. M. & Heffron, F. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect. Immun. 64, 1862–1865 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kohbata, S., Yokoyama, H. & Yabuuchi, E. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in ligated ileal loops: an ultrastructural study. Microbiol. Immunol. 30, 1225–1237 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Jones, B. D., Ghori, N. & Falkow, S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Vazquez-Torres, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Jepson, M. A., Collares-Buzato, C. B., Clark, M. A., Hirst, B. H. & Simmons, N. L. Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect. Immun. 63, 356–359 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, S. et al. The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70, 3843–3855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raffatellu, M. et al. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect. Immun. 73, 146–154 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stecher, B. et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect. Immun. 73, 3228–3241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hobbie, S., Chen, L. M., Davis, R. J. & Galan, J. E. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159, 5550–5559 (1997).

    CAS  PubMed  Google Scholar 

  17. Galan, J. E. & Curtiss, R. 3rd Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl Acad. Sci. USA 86, 6383–6387 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, S. I., Kukral, A. M. & Mekalanos, J. J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl Acad. Sci. USA 86, 5054–5058 (1989). This reference identified the PhoP/PhoQ two-component system as being important for the regulation of virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alpuche-Aranda, C. M., Swanson, J. A., Loomis, W. P. & Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl Acad. Sci. USA 89, 10079–10083 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alpuche-Aranda, C. M., Racoosin, E. L., Swanson, J. A. & Miller, S. I. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J. Exp. Med. 179, 601–608 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ochman, H., Soncini, F. C., Solomon, F. & Groisman, E. A. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl Acad. Sci. USA 93, 7800–7804 (1996). References 21 and 22 were the first to show that the T3SS that is encoded on SPI2 is important for virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl Acad. Sci. USA 93, 2593–2597 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Miao, E. A., Freeman, J. A. & Miller, S. I. Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J. Bacteriol. 184, 1493–1497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bader, M. W. et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50, 219–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. McCormick, B. A., Miller, S. I., Carnes, D. & Madara, J. L. Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect. Immun. 63, 2302–2309 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McCormick, B. A. et al. Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J. Cell Biol. 131, 1599–1608 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Hansen-Wester, I. & Hensel, M. Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect. 3, 549–559 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998). This study provided the first electron microscopy images of the T3SS needle complex.

    Article  CAS  PubMed  Google Scholar 

  30. Kimbrough, T. G. & Miller, S. I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA 97, 11008–11013 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kimbrough, T. G. & Miller, S. I. Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect. 4, 75–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Miao, E. A. & Miller, S. I. A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc. Natl Acad. Sci. USA 97, 7539–7544 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brumell, J. H. et al. SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4, 36–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Karavolos, M. H. et al. Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J. Bacteriol. 187, 1559–1567 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu, Y. & Galan, J. E. Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J. Bacteriol. 180, 3393–3399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong, K. H. & Miller, V. L. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J. Bacteriol. 180, 1793–1802 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bronstein, P. A., Miao, E. A. & Miller, S. I. InvB is a type III secretion chaperone specific for SspA. J. Bacteriol. 182, 6638–6644 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tucker, S. C. & Galan, J. E. Complex function for SicA, a Salmonella enterica serovar Typhimurium type III secretion-associated chaperone. J. Bacteriol. 182, 2262–2268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehrbar, K., Friebel, A., Miller, S. I. & Hardt, W. D. Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J. Bacteriol. 185, 6950–6967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Higashide, W. & Zhou, D. The first 45 amino acids of SopA are necessary for InvB binding and SPI-1 secretion. J. Bacteriol. 188, 2411–2420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akeda, Y. & Galan, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Brown, N. F. et al. Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog. 1, e32 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hensel, M. et al. Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2. Mol. Microbiol. 24, 155–167 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Deiwick, J. et al. Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. J. Bacteriol. 180, 4775–4780 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Steele-Mortimer, O. et al. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell. Microbiol. 4, 43–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Drecktrah, D., Knodler, L. A., Galbraith, K. & Steele-Mortimer, O. The Salmonella SPI1 effector SopB stimulates nitric oxide production long after invasion. Cell. Microbiol. 7, 105–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lawley, T. D. et al. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2, e11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brawn, L. C., Hayward, R. D. & Koronakis, V. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1, 63–75 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Giacomodonato, M. N. et al. SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153, 1221–1228 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Li, J. et al. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. Proc. Natl Acad. Sci. USA 92, 7252–7256 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ochman, H. & Groisman, E. A. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 64, 5410–5412 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyd, E. F., Li, J., Ochman, H. & Selander, R. K. Comparative genetics of the inv-spa invasion gene complex of Salmonella enterica. J. Bacteriol. 179, 1985–1991 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hensel, M. et al. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J. Bacteriol. 179, 1105–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hensel, M., Nikolaus, T. & Egelseer, C. Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol. Microbiol. 31, 489–498 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Porwollik, S., Wong, R. M. & McClelland, M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl Acad. Sci. USA 99, 8956–8961 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hormaeche, C. E. Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 37, 311–318 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Hensel, M. et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30, 163–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Beuzon, C. R. & Holden, D. W. Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect. 3, 1345–1352 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J. Exp. Med. 199, 231–241 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Behlau, I. & Miller, S. I. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J. Bacteriol. 175, 4475–4484 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998). This work elegantly demonstrated the ability of SopE to activate GTPases and subsequent actin rearrangements and transcriptional responses.

    Article  CAS  PubMed  Google Scholar 

  66. Bakshi, C. S. et al. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol. 182, 2341–2344 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Friebel, A. et al. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J. Biol. Chem. 276, 34035–34040 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Patel, J. C. & Galan, J. E. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J. Cell Biol. 175, 453–463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ellerbroek, S. M. et al. SGEF, a RhoG guanine nucleotide exchange factor that stimulates macropinocytosis. Mol. Biol. Cell 15, 3309–3319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Criss, A. K. & Casanova, J. E. Coordinate regulation of Salmonella enterica serovar Typhimurium invasion of epithelial cells by the Arp2/3 complex and Rho GTPases. Infect. Immun. 71, 2885–2891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Unsworth, K. E., Way, M., McNiven, M., Machesky, L. & Holden, D. W. Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cell. Microbiol. 6, 1041–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Shi, J., Scita, G. & Casanova, J. E. WAVE2 signaling mediates invasion of polarized epithelial cells by Salmonella typhimurium. J. Biol. Chem. 280, 29849–29855 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999). References 75 and 76 detected direct manipulation of actin by the SPI1 T3SS effectors SipA and SipC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, D., Mooseker, M. S. & Galan, J. E. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Scherer, C. A., Cooper, E. & Miller, S. I. The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol. Microbiol. 37, 1133–1145 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. McGhie, E. J., Hayward, R. D. & Koronakis, V. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20, 2131–2139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Higashide, W., Dai, S., Hombs, V. P. & Zhou, D. Involvement of SipA in modulating actin dynamics during Salmonella invasion into cultured epithelial cells. Cell. Microbiol. 4, 357–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, L. M., Hobbie, S. & Galan, J. E. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274, 2115–2118 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Boyle, E. C., Brown, N. F. & Finlay, B. B. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell. Microbiol. 8, 1946–1957 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006).

    Article  CAS  Google Scholar 

  85. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  86. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jones, M. A. et al. Secreted effector proteins of Salmonella dublin act in concert to induce enteritis. Infect. Immun. 66, 5799–5804 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wood, M. W. et al. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell Microbiol. 2, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, Y., Higashide, W. M., McCormick, B. A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Jiang, X. et al. The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Mol. Microbiol. 54, 1186–1198 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999). References 92 and 93 identified the GTPase-antagonizing activity of SptP and showed how the activities of SopE and SptP are temporally regulated by proteasome-dependent degradation.

    Article  CAS  PubMed  Google Scholar 

  93. Kubori, T. & Galan, J. E. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Murli, S., Watson, R. O. & Galan, J. E. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol. 3, 795–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Haraga, A. & Miller, S. I. A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect. Immun. 71, 4052–4058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miao, E. A. et al. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34, 850–864 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Haraga, A. & Miller, S. I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Collier-Hyams, L. S. et al. Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappaB pathway. J. Immunol. 169, 2846–2850 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Buchwald, D. S. & Blaser, M. J. A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev. Infect. Dis. 6, 345–356 (1984).

    Article  CAS  PubMed  Google Scholar 

  103. Richter-Dahlfors, A., Buchan, A. M. & Finlay, B. B. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569–580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fields, P. I., Swanson, R. V., Haidaris, C. G. & Heffron, F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl Acad. Sci. USA 83, 5189–5193 (1986). This important study demonstrated that survival within macrophages is important for S. typhimurium virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O'Callaghan, D., Maskell, D., Liew, F. Y., Easmon, C. S. & Dougan, G. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect. Immun. 56, 419–423 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dukes, J. D. et al. The secreted Salmonella dublin phosphoinositide phosphatase, SopB, localizes to PtdIns(3)P-containing endosomes and perturbs normal endosome to lysosome trafficking. Biochem. J. 395, 239–247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carrol, M. E., Jackett, P. S., Aber, V. R. & Lowrie, D. B. Phagolysosome formation, cyclic adenosine 3′:5′-monophosphate and the fate of Salmonella typhimurium within mouse peritoneal macrophages. J. Gen. Microbiol. 110, 421–429 (1979).

    Article  CAS  PubMed  Google Scholar 

  108. Buchmeier, N. A. & Heffron, F. Inhibition of macrophage phagosome–lysosome fusion by Salmonella typhimurium. Infect. Immun. 59, 2232–2238 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Oh, Y. K. et al. Rapid and complete fusion of macrophage lysosomes with phagosomes containing Salmonella typhimurium. Infect. Immun. 64, 3877–3883 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Drecktrah, D., Knodler, L. A., Howe, D. & Steele-Mortimer, O. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic 8, 212–225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rathman, M., Sjaastad, M. D. & Falkow, S. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect. Immun. 64, 2765–2773 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Martin-Orozco, N. et al. Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. Mol. Biol. Cell 17, 498–510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1, 33–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Smith, A. C., Cirulis, J. T., Casanova, J. E., Scidmore, M. A. & Brumell, J. H. Interaction of the Salmonella-containing vacuole with the endocytic recycling system. J. Biol. Chem. 280, 24634–24641 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Garcia-del Portillo, F. & Finlay, B. B. Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J. Cell Biol. 129, 81–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Meresse, S., Steele-Mortimer, O., Finlay, B. B. & Gorvel, J. P. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J. 18, 4394–4403 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hashim, S., Mukherjee, K., Raje, M., Basu, S. K. & Mukhopadhyay, A. Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J. Biol. Chem. 275, 16281–16288 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Brumell, J. H., Tang, P., Mills, S. D. & Finlay, B. B. Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic 2, 643–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Garvis, S. G., Beuzon, C. R. & Holden, D. W. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell. Microbiol. 3, 731–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Cuellar-Mata, P. et al. Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J. Biol. Chem. 277, 2258–2265 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Catron, D. M. et al. The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell. Microbiol. 4, 315–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Fields, P. I., Groisman, E. A. & Heffron, F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243, 1059–1062 (1989).

    Article  CAS  PubMed  Google Scholar 

  123. Miller, S. I. & Mekalanos, J. J. Constitutive expression of the PhoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172, 2485–2490 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nickerson, C. A. & Curtiss, R. Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection. Infect. Immun. 65, 1814–1823 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bearson, B. L., Wilson, L. & Foster, J. W. A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J. Bacteriol. 180, 2409–2417 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shiloh, M. U. et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10, 29–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Gunn, J. S., Ryan, S. S., Van Velkinburgh, J. C., Ernst, R. K. & Miller, S. I. Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 68, 6139–6146 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. & Fang, F. C. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192, 227–236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hisert, K. B. et al. A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol. Microbiol. 56, 1234–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Humphreys, S., Stevenson, A., Bacon, A., Weinhardt, A. B. & Roberts, M. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect. Immun. 67, 1560–1568 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rosenberger, C. M., Gallo, R. L. & Finlay, B. B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl Acad. Sci. USA 101, 2422–2427 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Curtiss, R. & Kelly, S. M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035–3043 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fang, F. C. et al. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11978–11982 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee, A. K., Detweiler, C. S. & Falkow, S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J. Bacteriol. 182, 771–781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Testerman, T. L. et al. The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol. Microbiol. 43, 771–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Prost, L. R. et al. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol. Cell 26, 165–174 (2007). References 136 and 138 show that PhoQ directly senses antimicrobial peptides and low pH.

    Article  CAS  PubMed  Google Scholar 

  137. Heithoff, D. M. et al. Coordinate intracellular expression of Salmonella genes induced during infection. J. Bacteriol. 181, 799–807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bader, M. W. et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122, 461–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Cho, U. S. et al. Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. J. Mol. Biol. 356, 1193–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Gibbons, H. S., Kalb, S. R., Cotter, R. J. & Raetz, C. R. Role of Mg2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol. Microbiol. 55, 425–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Ernst, R. K., Guina, T. & Miller, S. I. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 3, 1327–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Guo, L. et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276, 250–253 (1997). This study demonstrates that PhoP/PhoQ regulates the remodelling of the LPS structure in a way that makes it less immunostimulatory by TLR4 signalling.

    Article  CAS  PubMed  Google Scholar 

  143. Gunn, J. S. et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27, 1171–1182 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Hilbert, F., Garcia-del Portillo, F. & Groisman, E. A. A periplasmic D-alanyl-D-alanine dipeptidase in the Gram-negative bacterium Salmonella enterica. J. Bacteriol. 181, 2158–2165 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fang, F. C. et al. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc. Natl Acad. Sci. USA 96, 7502–7507 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30, 175–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Uchiya, K. et al. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18, 3924–3933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shotland, Y., Kramer, H. & Groisman, E. A. The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Mol. Microbiol. 49, 1565–1576 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Freeman, J. A., Rappl, C., Kuhle, V., Hensel, M. & Miller, S. I. SpiC is required for translocation of Salmonella pathogenicity island 2 effectors and secretion of translocon proteins SseB and SseC. J. Bacteriol. 184, 4971–4980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu, X. J. et al. SpiC is required for secretion of Salmonella pathogenicity island 2 type III secretion system proteins. Cell. Microbiol. 4, 531–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Beuzon, C. R. et al. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19, 3235–3249 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ruiz-Albert, J. et al. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 44, 645–661 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Freeman, J. A., Ohl, M. E. & Miller, S. I. The Salmonella enterica serovar Typhimurium translocated effectors SseJ and SifsB are targeted to the Salmonella-containing vacuole. Infect. Immun. 71, 418–427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Knodler, L. A. et al. Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Mol. Microbiol. 49, 685–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Deiwick, J. et al. The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect. Immun. 74, 6965–6972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Brumell, J. H., Goosney, D. L. & Finlay, B. B. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3, 407–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Miao, E. A. et al. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol. Microbiol. 48, 401–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Salcedo, S. P. & Holden, D. W. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 22, 5003–5014 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kuhle, V., Jackel, D. & Hensel, M. Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic 5, 356–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y. & Finlay, B. B. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl Acad. Sci. USA 90, 10544–10548 (1993). References 163 and 164 were the first to show that S. typhimurium produces Sifs in infected cultured cells and that the effector that is responsible for this activity is SifA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  165. Knodler, L. A. & Steele-Mortimer, O. The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Mol. Biol. Cell. 16, 4108–4123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Reinicke, A. T. et al. A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J. Biol. Chem. 280, 14620–14627 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Guy, R. L., Gonias, L. A. & Stein, M. A. Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms-aroE intragenic region. Mol. Microbiol. 37, 1417–1435 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Henry, T. et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc. Natl Acad. Sci. USA 103, 13497–13502 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hansen-Wester, I., Stecher, B. & Hensel, M. Type III secretion of Salmonella enterica serovar Typhimurium translocated effectors and SseFG. Infect. Immun. 70, 1403–1409 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kuhle, V. & Hensel, M. SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell. Microbiol. 4, 813–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Abrahams, G. L., Muller, P. & Hensel, M. Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 7, 950–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Kuhle, V., Abrahams, G. L. & Hensel, M. Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner. Traffic 7, 716–730 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Birmingham, C. L., Jiang, X., Ohlson, M. B., Miller, S. I. & Brumell, J. H. Salmonella-induced filament formation is a dynamic phenotype induced by rapidly replicating Salmonella enterica serovar Typhimurium in epithelial cells. Infect. Immun. 73, 1204–1208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lesnick, M. L., Reiner, N. E., Fierer, J. & Guiney, D. G. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol. 39, 1464–1470 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Browne, S. H., Lesnick, M. L. & Guiney, D. G. Genetic requirements for Salmonella-induced cytopathology in human monocyte-derived macrophages. Infect. Immun. 70, 7126–7135 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gotoh, H. et al. Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in Salmonella. Microb. Pathog. 34, 227–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Brumlik, M. J. & Buckley, J. T. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. J. Bacteriol. 178, 2060–2064 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ohlson, M. B., Fluhr, K., Birmingham, C. L., Brumell, J. H. & Miller, S. I. SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice. Infect. Immun. 73, 6249–6259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Harrison, R. E. et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell 15, 3146–3154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Marsman, M., Jordens, I., Kuijl, C., Janssen, L. & Neefjes, J. Dynein-mediated vesicle transport controls intracellular Salmonella replication. Mol. Biol. Cell 15, 2954–2964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Meresse, S. et al. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell. Microbiol. 3, 567–577 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Viboud, G. I. & Bliska, J. B. A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. EMBO J. 20, 5373–5382 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sun, J., Hobert, M. E., Rao, A. S., Neish, A. S. & Madara, J. L. Bacterial activation of β-catenin signaling in human epithelia. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G220–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Zhou, D., Mooseker, M. S. & Galan, J. E. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl Acad. Sci. USA 96, 10176–10181 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lee, C. A. et al. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl Acad. Sci. USA 97, 12283–12288 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hernandez, L. D., Pypaert, M., Flavell, R. A. & Galan, J. E. A Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell Biol. 163, 1123–1131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hayward, R. D. et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol. 56, 590–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Carlson, S. A., Omary, M. B. & Jones, B. D. Identification of cytokeratins as accessory mediators of Salmonella entry into eukaryotic cells. Life Sci. 70, 1415–1426 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Knodler, L. A., Finlay, B. B. & Steele-Mortimer, O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J. Biol. Chem. 280, 9058–9064 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Mukherjee, K., Parashuraman, S., Raje, M. & Mukhopadhyay, A. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J. Biol. Chem. 276, 23607–23615 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Coombes, B. K. et al. Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar Typhimurium with autonomous expression from its associated phage. J. Mol. Biol. 348, 817–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L. & Finlay, B. B. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell. Microbiol. 3, 75–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Tezcan-Merdol, D. et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol. Microbiol. 39, 606–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Worley, M. J., Nieman, G. S., Geddes, K. & Heffron, F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc. Natl Acad. Sci. USA 103, 17915–17920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kujat Choy, S. L. et al. SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar Typhimurium. Infect. Immun. 72, 5115–5125 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Geddes, K., Worley, M., Niemann, G. & Heffron, F. Identification of new secreted effectors in Salmonella enterica serovar Typhimurium. Infect. Immun. 73, 6260–6271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tsolis, R. M., Adams, L. G., Ficht, T. A. & Baumler, A. J. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect. Immun. 67, 4879–4885 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the entire Salmonella pathogenesis community for its work that made this Review possible. In particular, we are grateful to members of the Miller laboratory, past and present, for their contributions to the ideas that are presented here. We would also like to apologize to those authors whose work was not cited owing to space limitations. A.H. is supported by a Career Development Award from the Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (National Institute of Allergy and Infectious Diseases (NIAID) grant U54 AI057141). M.B.O. is supported by the Comprehensive Training in Inter-Disciplinary Oral Health Research T32 grant DE07132. S.I.M. is supported by the National Institutes of Health, NIAID grants R01 AI30479, R01 AI048683 and U54 AI057141 for the Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Miller.

Related links

Related links

DATABASES

Entrez Genome Project

Salmonella typhi

Salmonella typhimurium

Glossary

Pinocytosis

A nonspecific process by which small volumes of extracellular fluid are taken up by certain eukaryotic cells owing to the engulfment of fluid in small membrane vesicles.

Tight junction

The connection between two adjacent cells in a monolayer that is formed by extracellular-matrix and protein complexes; impermeable to water and other molecules.

Macropinocytosis

Used to refer to the endocytosis of large volumes of extracellular fluid and particles by membrane ruffles.

Reticuloendothelial system

(RES). The meshwork of connective tissue that contains immune cells, such as macrophages, and surrounds tissues that are associated with the immune system, such as the spleen and lymph nodes. Immune cells in the RES provide surveillance of antigens that the body encounters and can be quickly recruited to sites of infection.

Pathogenicity island

A large region of genomic DNA that encodes genes that are associated with virulence. A pathogenicity island is typically transferred horizontally between bacterial strains and is often inserted into tRNA genes within the genome.

Transepithelial migration

The movement of cells, such as neutrophils and invading bacteria, from the basolateral (bottom) to the apical (top) surface, or the reverse, of an epithelial cell layer. Migration can also occur between two adjacent cells through tight junctions.

Auxotrophic

An organism that cannot synthesize certain organic compounds, such as amino acids, that are necessary for its metabolism. For growth, auxotrophic organisms must be able to take up the lacking compound from the surrounding environment.

Prenylated

The post-translational addition of lipid chains, such as farnesyl or geranylgeranyl, to cysteine residues in proteins that contain a prenylation motif called a CaaX box. This process facilitates membrane localization and/or protein–protein interactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraga, A., Ohlson, M. & Miller, S. Salmonellae interplay with host cells. Nat Rev Microbiol 6, 53–66 (2008). https://doi.org/10.1038/nrmicro1788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing